skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental exploration of quantitative optics-mechanics connection
We experimentally investigate polarization, entanglement, and complementary behavior of a light beam, and the center of mass and moment of inertia of a two-mass system, confirming an unexpected quantitative link between wave optics and mechanics.  more » « less
Award ID(s):
2316878
PAR ID:
10626894
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-95-1
Page Range / eLocation ID:
JTu5A.33
Format(s):
Medium: X
Location:
Denver, Colorado
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectivesPreviously developed methods in subadult body mass estimation have not been tested in populations other than European–American or African–American. This study uses a contemporary Taiwanese sample to test these methods. Through evaluating their accuracy and bias, we addressed whether the allometric relationships between body mass and skeletal traits commonly used in subadult body mass estimation are conserved among different populations. Materials and MethodsComputed tomography scans of lower limbs from individuals aged 0–17 years old of both sexes were collected from National Taiwan University Hospital along with documented body weight. Polar second moment of area, distal femoral metaphyseal breadth, and maximum superior/inferior femoral head diameter were collected either directly from the scans or from reconstructed 3D models. Estimated body mass was compared with documented body mass to assess the performance of the equations. ResultsCurrent methods provided good body mass estimates in Taiwanese individuals, with accuracy and bias similar to those reported in other validation studies. A tendency for increasing error with increasing age was observed for all methods. Reduced major axis regression showed the allometric relationships between different skeletal traits and body mass across different age categories can all be summarized using a common fitted line. A revised, maximum likelihood‐based approach was proposed for all skeletal traits. DiscussionThe results suggested that the allometric relationships between body mass and different skeletal traits are largely conserved among populations. The revised method provided improved applicability with strong underlying theoretical justifications, and potential for future improvements. 
    more » « less
  2. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars. 
    more » « less
  3. ABSTRACT In general, sustained high rates of physical activity require a high maximal aerobic capacity (V̇O2,max), which may also necessitate a high basal aerobic metabolism (BMR), given that the two metabolic states are linked via shared organ systems, cellular properties and metabolic pathways. We tested the hypotheses that (a) selective breeding for high voluntary exercise in mice would elevate both V̇O2,max and BMR, and (b) these increases are accompanied by increases in the size of some internal organs (ventricle, triceps surae muscle, liver, kidney, spleen, lung, brain). We measured 72 females from generations 88 and 96 of an ongoing artificial selection experiment comprising four replicate High Runner (HR) lines bred for voluntary daily wheel-running distance and four non-selected control lines. With body mass as a covariate, HR lines as a group had significantly higher V̇O2,max (+13.6%, P<0.0001), consistent with previous studies, but BMR did not significantly differ between HR and control lines (+6.5%, P=0.181). Additionally, HR mice did not statistically differ from control mice for whole-body lean or fat mass, or for the mass of any organ collected (with body mass as a covariate). Finally, mass-independent V̇O2,max and BMR were uncorrelated (r=0.073, P=0.552) and the only statistically significant correlation with an organ mass was for V̇O2,max and ventricle mass (r=0.285, P=0.015). Overall, our results indicate that selection for a behavioral trait can yield large changes in behavior without proportional modifications to underlying morphological or physiological traits. 
    more » « less
  4. Abstract Gravitational-wave (GW) detections are starting to reveal features in the mass distribution of double compact objects. The lower end of the black hole (BH) mass distribution is especially interesting as few formation channels contribute here and because it is more robust against variations in the cosmic star formation than the high-mass end. In this work we explore the stable mass transfer channel for the formation of GW sources with a focus on the low-mass end of the mass distribution. We conduct an extensive exploration of the uncertain physical processes that impact this channel. We note that, for fiducial assumptions, this channel reproduces the peak at ∼9Min the GW-observed binary BH mass distribution remarkably well and predicts a cutoff mass that coincides with the upper edge of the purported neutron star–black hole (NS–BH) mass gap. The peak and cutoff mass are a consequence of the unique properties of this channel; namely (1) the requirement of stability during the mass transfer phases, and (2) the complex way in which the final compact object masses scale with the initial mass. We provide an analytical expression for the cutoff in the primary component mass and show that this adequately matches our numerical results. Our results imply that selection effects resulting from the formation channel alone can provide an explanation for the purported NS–BH mass gap in GW detections. This provides an alternative to the commonly adopted view that the gap emerges during BH formation. 
    more » « less
  5. ABSTRACT We present a model to estimate the average primary masses, companion mass ranges, the inclination limit for recognizing a rotational variable, and the primary mass spreads for populations of binary stars. The model fits a population’s binary mass function distribution and allows for a probability that some mass functions are incorrectly estimated. Using tests with synthetic data, we assess the model’s sensitivity to each parameter, finding that we are most sensitive to the average primary mass and the minimum companion mass, with less sensitivity to the inclination limit and little to no sensitivity to the primary mass spread. We apply the model to five populations of binary spotted rotational variables identified in ASAS-SN, computing their binary mass functions using RV data from APOGEE. Their average primary mass estimates are consistent with our expectations based on their CMD locations ($$\sim 0.75 \, {\rm M}_{\odot }$$ for lower main sequence primaries and $$\sim 0.9$$–$$1.2 \, {\rm M}_{\odot }$$ for RS CVn and sub-subgiants). Their companion mass range estimates allow companion masses down to $$M_2/M_1\simeq 0.1$$, although the main sequence population may have a higher minimum mass fraction ($$\sim 0.4$$). We see weak evidence of an inclination limit $$\gtrsim 50^{\circ }$$ for the main sequence and sub-subgiant groups and no evidence of an inclination limit in the other groups. No groups show strong evidence for a preferred primary mass spread. We conclude by demonstrating that the approach will provide significantly better estimates of the primary mass and the minimum mass ratio and reasonable sensitivity to the inclination limit with 10 times as many systems. 
    more » « less