skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Distributed algorithms of stochastic games for robot systems in smart manufacturing
In this paper, we study the problem of distributed generalized stochastic Nash equilibrium seeking for robot systems over a connected undirected graph. We use the cost functions containing uncertainty to represent the system’s performance under varying conditions. To mitigate the challenges posed by this uncertainty, we employ the Tikhonov regularization scheme, which also helps us to relax the strongly monotone condition of the cost functions to the strictly monotone condition. We also consider the inequality constraints, which represent the feasible working space of robots. Additionally, auxiliary parameters are introduced in the control laws to facilitate seeing the variational generalized stochastic Nash equilibrium. The convergence of the proposed control laws is analyzed by using the operator splitting method. Finally, we demonstrate the effectiveness of the proposed algorithm through an example involving multiple robots connected through a communication network.  more » « less
Award ID(s):
2243930
PAR ID:
10626904
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
35
Issue:
2
ISSN:
1054-1500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent. 
    more » « less
  2. We consider the stochastic generalized Nash equilibrium problem (SGNEP) where a set of self-interested players, subject to certain global constraints, aim to optimize their local objectives that depend on their own decisions and the decisions of others and are influenced by some random factors. A distributed stochastic generalized Nash equilibrium seeking algorithm is proposed based on the Douglas-Rachford operator splitting scheme, which only requires local communications among neighbors. The proposed scheme significantly relaxes assumptions on co-coercivity and contractiveness in the existing literature, where the projected stochastic subgradient method is applied to provide approximate solutions to the augmented best-response subproblems for each player. Finally, we illustrate the validity of the proposed algorithm through a Nash-Cournot production game. 
    more » « less
  3. We consider the stochastic generalized Nash equilibrium problem (SGNEP) where a set of self-interested players, subject to certain global constraints, aim to optimize their local objectives that depend on their own decisions and the decisions of others and are influenced by some random factors. A distributed stochastic generalized Nash equilibrium seeking algorithm is proposed based on the Douglas-Rachford operator splitting scheme, which only requires local communications among neighbors. The proposed scheme significantly relaxes assumptions on co-coercivity and contractiveness in the existing literature, where the projected stochastic subgradient method is applied to provide approximate solutions to the augmented best-response subproblems for each player. Finally, we illustrate the validity of the proposed algorithm through a Nash-Cournot production game. 
    more » « less
  4. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  5. null (Ed.)
    We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less