skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2243930

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. In this paper, we study the problem of distributed generalized stochastic Nash equilibrium seeking for robot systems over a connected undirected graph. We use the cost functions containing uncertainty to represent the system’s performance under varying conditions. To mitigate the challenges posed by this uncertainty, we employ the Tikhonov regularization scheme, which also helps us to relax the strongly monotone condition of the cost functions to the strictly monotone condition. We also consider the inequality constraints, which represent the feasible working space of robots. Additionally, auxiliary parameters are introduced in the control laws to facilitate seeing the variational generalized stochastic Nash equilibrium. The convergence of the proposed control laws is analyzed by using the operator splitting method. Finally, we demonstrate the effectiveness of the proposed algorithm through an example involving multiple robots connected through a communication network. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026