skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: Wave-particle duality ellipse and application in quantum imaging with undetected photons
We present a systematic framework to quantify the interplay between coherence and wave-particle duality in generic two-path interference systems. Our analysis reveals a closed-form duality ellipse (DE) equality, that rigorously unifies visibility (a traditional waveness measure) and predictability (a particleness measure) with degree of coherence, providing a complete mathematical embodiment of Bohr's complementarity principle. Extending this framework to quantum imaging with undetected photons (QIUP), where both path information and photon interference are inherently linked to spatial object reconstruction, we establish an imaging duality ellipse (IDE) that directly connects wave-particle duality to the object's transmittance profile. This relation enables object characterization through duality measurements alone and remains robust against experimental imperfections such as decoherence and misalignment. Our results advance the fundamental understanding of quantum duality while offering a practical toolkit for optimizing coherence-driven quantum technologies, from imaging to sensing.  more » « less
Award ID(s):
2316878
PAR ID:
10626910
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
7
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The classical properties of thermal light fields were instrumental in shaping our early understanding of light. Before the invention of the laser, thermal light was used to investigate the wave-particle duality of light. The subsequent formulation of the quantum theory of electromagnetic radiation later confirmed the classical nature of thermal light fields. Here, we fragment a pseudothermal field into its multiparticle constituents to demonstrate that it can host multiphoton dynamics mediated by either classical or quantum properties of coherence. This is shown in a forty-particle system through a process of scattering mediated by twisted paths endowed with orbital angular momentum. This platform enables accurate projections of the scattered pseudothermal system into isolated multiphoton subsystems governed by quantum dynamics. Interestingly, the isolated multiphoton subsystems exhibiting quantum coherence produce interference patterns previously attributed to entangled optical systems. As such, our work unveils novel mechanisms to isolate quantum systems from classical fields. This possibility opens new paradigms in quantum physics with enormous implications for the development of robust quantum technologies. 
    more » « less
  2. Abstract Wave‐particle duality, intertwining two inherently contradictory properties of quantum systems, remains one of the most conceptually profound aspects of quantum mechanics. By using the concept of energy capacity, the ability of a quantum system to store and extract energy, a device‐independent uncertainty relation is derived for wave‐particle duality. This relation is shown to be independent of both the representation space and the measurement basis of the quantum system. Furthermore, it is experimentally validated that this wave‐particle duality relation using a photon‐based platform. 
    more » « less
  3. A multiple access channel describes a situation in which multiple senders are trying to forward messages to a single receiver using some physical medium. In this paper we consider scenarios in which this medium consists of just a single classical or quantum particle. In the quantum case, the particle can be prepared in a superposition state thereby allowing for a richer family of encoding strategies. To make the comparison between quantum and classical channels precise, we introduce an operational framework in which all possible encoding strategies consume no more than a single particle. We apply this framework to an N -port interferometer experiment in which each party controls a path the particle can traverse. When used for the purpose of communication, this setup embodies a multiple access channel (MAC) built with a single particle.We provide a full characterization of the N -party classical MACs that can be built from a single particle, and we show that every non-classical particle can generate a MAC outside the classical set. To further distinguish the capabilities of a single classical and quantum particle, we relax the locality constraint and allow for joint encodings by subsets of 1 < K N parties. This generates a richer family of classical MACs whose polytope dimension we compute. We identify a generalized fingerprinting inequality'' as a valid facet for this polytope, and we verify that a quantum particle distributed among N separated parties can violate this inequality even when K = N 1 . Connections are drawn between the single-particle framework and multi-level coherence theory. We show that every pure state with K -level coherence can be detected in a semi-device independent manner, with the only assumption being conservation of particle number. 
    more » « less
  4. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] Instruction in quantum mechanics is becoming increasingly important as the field is not only a key part of modern physics research but is also important for emerging technologies. However, many students regard quantum mechanics as a particularly challenging subject, in part because it is considered very mathematical and abstract. One potential way to help students understand and contextualize unintuitive quantum ideas is to provide them opportunities to work with physical apparatus demonstrating these phenomena. In order to understand how working with quantum experiments affects students’ reasoning, we performed think-aloud lab sessions with two pairs of students as they worked through a sequence of quantum optics experiments that demonstrated particle-wave duality of photons. Analyzing the in-the-moment student thinking allowed us to identify the resources students activated while reasoning through the experimental evidence of single-photon interference, as well as student ideas about what parts of the experiments were quantum versus classical. This work will aid instructors in helping their students construct an understanding of these topics from their own ideas and motivate future investigations into the use of hands-on opportunities to facilitate student learning about quantum mechanics. Published by the American Physical Society2024 
    more » « less
  5. Superlattices are a distinctive class of artificial nanostructures formed by the periodic stacking of two or more materials. The high density of interfaces in these structures often gives rise to exotic physical properties. In the context of thermal transport, it is well established that such interfaces can significantly scatter particle-like phonons while also inducing constructive or destructive interference in wave-like phonons, depending on the relationship between the phonons’ coherence lengths and the superlattice’s period thickness. In this work, we systematically investigate the effect of temperature on the spectral energy density of phonon modes in superlattices. Additionally, we examine how variations in superlattice period thickness influence phonon lifetimes and energy density. Our findings provide critical insights into the spectral phonon properties of superlattices, particularly in terms of their coherence and lifetimes. 
    more » « less