The adoption of robotics into the construction industry has been progressing slower than in the manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward adopting robotics. Addressing these shortfalls would be a necessary component of the shift toward industrializing the construction industry. Despite this lag in technology adoption, the interest and development of robotic technology targeting the construction industry has grown in recent years and is ranging from the use of drones for tracking to advances in offsite fabrication. However, the integration into fundamental site construction necessitates reconsidering the information technology infrastructure needed to support detailed task execution information needs in the change from craft labor to robotic operations. This research presents the identification and mapping of the Information Technology (IT) system architecture required to support building information modeling (BIM) to robotic construction. Combining elements of BIM architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements vital for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods, are defined.
more »
« less
AutoGen-based AI assistant for improving the interactions between BIM and project teams for design coordination
In the construction industry, building information modeling (BIM) has been widely utilized in design coordination. However, this process is time-consuming to query the required element information and still requires the support of the BIM coordinator. Meanwhile, during diverse participants’ discussions, it is challenging to record knowledge and experiences residing in their minds and timely respond to them in the BIM model. GPT-based Large Language Models (LLMs) enable providing automatic solutions but lack accuracy and consistency, specifically for the construction domain. To bridge these gaps, we propose to develop an AI BIM coordinator by integrating basic construction knowledge and skillset into the current AutoGen model. It aims to alleviate high-skill requirements and specific functions of traditional BIM development while enhancing the interdisciplinary interpretability and performance of AI models. Specifically, we first identify the frequent and common interactions between BIM and project teams during the design coordination meetings. Correspondingly, we build the skillset that includes basic functions regarding building element semantic, geometric, and topological information. With this skillset, our designed workflow can interpret 3D BIM space and answer specific questions from users through flexible revisions and extensions. Beyond the text responses that describe relations among elements, the BIM tool can be automatically invoked to execute this task and the model can be directly built in the 3D environment for stakeholders’ discussions in the design coordination meetings. If failed, our designed checker agent will regenerate the code until execution is succeeded. As users continually communicate with the AI BIM coordinator and provide feedback, the assistant can collect and annotate these data for fine-tuning the current model to make it more adaptive to specific construction tasks. For validation, a prototype system is developed with building design coordination meeting data. The results demonstrate that our designed workflow has better performance in execution succeeded rate (84.62%) and accuracy (76.92%) despite consuming more time (1 min 12 secs – 3 mins 1 sec) than general agent workflow.
more »
« less
- Award ID(s):
- 2222730
- PAR ID:
- 10626950
- Publisher / Repository:
- the 2024 International Conference on Human Factors in Design, Engineering, and Computing
- Date Published:
- ISSN:
- 1829-1837
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The adoption of robotics into the construction industry has been much slower than in manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward the adoption of robotics as a component of a shift toward industrialized construction. Despite this lag, the interest and development of robotic technology targeting construction has grown in recent years, ranging from the use of drones for tracking to use in offsite fabrication. However, the integration into fundamental site construction requires reconsideration of the information technology infrastructure needed to support detailed task execution information needs in the transition from craft labor to robotic operations. This research presents the identification and mapping of the IT System Architecture required to support BIM to Robotic Construction. Combining elements of the Building Information Modeling architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements required for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to Robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods are defined.more » « less
-
In recent decades, the construction industry has undergone a technological shift incorporating innovative technologies, such as robotics. However, information requirements must be met to integrate robotics further. Currently, building information models (BIM) contain substantial project information that can be leveraged for robots to create construction tasks, but for some building systems, the level of development (LOD) is inadequate to support these new requirements. Therefore, this study proposes a framework to increase the LOD of building systems by considering location information (X, Y, Z), orientation, material type, and component I.D. The computational modeler, Dynamo, is leveraged to increase the model’s LOD, extract information, and facilitate robotic task execution in the future. A case study is presented for multiple masonry room configurations developed in Autodesk Revit, where masonry units are generated and placed into design locations based on the geometry of the wall system. The case study used concrete masonry units (CMU) and standard brick. The number of partial-sized and full-sized blocks for each configuration was recorded, along with the computational time required to generate the units. It was observed that room configurations with more openings had longer computational times when compared to rooms constructed from the same material. After running the script, the model is reviewed to ensure accuracy and prevent overlaps or gaps in the model. The workflow provides insight into the methods used to interpret model geometry and extract information.more » « less
-
Building Information Modelling (BIM) is an integrated informational process and plays a key role in enabling efficient planning and control of a project in the Architecture, Engineering, and Construction (AEC) domain. Industry Foundation Classes (IFC)-based BIM allows building information to be interoperable among different BIM applications. Different stakeholders take different responsibilities in a project and therefore keep different types of information to meet project requirements. In this paper, the authors proposed and adopted a six-step methodology to support BIM interoperability between architectural design and structural analysis at both AEC project level and information level, in which: (1) the intrinsic and extrinsic information transferred between architectural models and structural models were analyzed and demonstrated by a Business Process Model and Notation (BPMN) model that the authors developed; (2) the proposed technical routes with different combinations, and their applications to different project delivery methods provided new instruments to stakeholders in industry for efficient and accurate decision-making; (3) the material centered invariant signature with portability can improve information exchange between different data formats and models to support interoperable BIM applications; and (4) a developed formal material information representation and checking method was tested on a case study where its efficiency was demonstrated to outperform: (1) proprietary representations and information checking method based on a manual operation, and (2) MVD-based information checking method. The proposed invariant signatures-based material information representation and checking method brings a better efficiency for information transfer between architectural design and structural analysis, which can have significant positive effect on a project delivery, due to the frequent and iterative update of a project design. This improves the information transfer and coordination between architects and structural engineers and therefore the efficiency of the whole project. The proposed method can be extended and applied to other application phases and functions such as cost estimation, scheduling, and energy analysis.more » « less
-
null (Ed.)Building information modeling (BIM) provides a novel way of information management for all lifecycle phases of a building project. It is facilitating the processes of a construction project, such as architectural design, structural analysis, and construction management. Industry foundation classes (IFC) is an open standard for information exchange between different BIM applications in the architecture, engineering, and construction (AEC) domain. It represents project information in an interoperable way that contains geometric information, material information, and other physical and functional information needed of analyzing and managing a project. Structural analysis aims to simulate the structural performance of a building under different types of loads to make sure the structure is safe. The needed information for structural analysis mainly include geometric, material, and load information. These information come from architectural design and selected analysis scenarios. The information should be represented in an interoperable way to allow information transfer between different phases and different stakeholders. Information missing is a crucial problem during the interoperable use of BIM, which may cause misunderstandings between different stakeholders and therefore erroneous structural analysis result and misleading information to feed construction process later on. In this paper, the authors focus on analyzing the use of IFC at three stages in structural analysis, namely, intrinsic modeling stage, extrinsic modeling stage, and the analysis stage. The authors compared IFC files at these three stages with original BIM software text files in terms of information coverage, and identified information missing cases. This is the first systematic investigation of BIM interoperability at detailed work stages of structural analysis and provides insights in how BIM usage should be improved in this domain.more » « less
An official website of the United States government

