skip to main content

This content will become publicly available on April 1, 2023

Title: System Architecture for Supporting BIM to Robotic Construction Integration
The adoption of robotics into the construction industry has been much slower than in manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward the adoption of robotics as a component of a shift toward industrialized construction. Despite this lag, the interest and development of robotic technology targeting construction has grown in recent years, ranging from the use of drones for tracking to use in offsite fabrication. However, the integration into fundamental site construction requires reconsideration of the information technology infrastructure needed to support detailed task execution information needs in the transition from craft labor to robotic operations. This research presents the identification and mapping of the IT System Architecture required to support BIM to Robotic Construction. Combining elements of the Building Information Modeling architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements required for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to Robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods are defined.
Authors:
; ;
Award ID(s):
1928626
Publication Date:
NSF-PAR ID:
10358889
Journal Name:
Proceedings Canadian Society for Civil Engineering
ISSN:
0226-2053
Sponsoring Org:
National Science Foundation
More Like this
  1. The adoption of robotics into the construction industry has been progressing slower than in the manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward adopting robotics. Addressing these shortfalls would be a necessary component of the shift toward industrializing the construction industry. Despite this lag in technology adoption, the interest and development of robotic technology targeting the construction industry has grown in recent years and is ranging from the use of drones for tracking to advances in offsite fabrication. However, the integration into fundamental site construction necessitates reconsidering the information technology infrastructure needed to support detailed task execution information needs in the change from craft labor to robotic operations. This research presents the identification and mapping of the Information Technology (IT) system architecture required to support building information modeling (BIM) to robotic construction. Combining elements of BIM architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements vital for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to robotic Construction Workflow, shortcomings in existing infrastructure, notablymore »regarding the ability to decompose construction fabrication and assembly means and methods, are defined.« less
  2. In the past, the construction industry has been slow to adopt new technology. There has been a rapid expansion of technologies, often referred to as Industry 4.0, to aid in the use of automation. One challenge paralleling these new technologies is implementing how a robot interprets design information, specifically information from a Building Information Model (BIM). This paper presents a method for identifying and transforming information from BIM to support robotic material placement on the construction site. This research will include a review of what information can be directly extracted from the model and what must be supplemented to the model for the robot to perform defined tasks within a construction site. The construction sites’ dynamic nature poses multiple challenges that must be addressed for the information extracted from a model to be used by a robot in daily construction operations. This research also identifies barriers and limitations based upon current practice, such as different levels of development or model content as well as needed precision within the information provided for a mobile robot to complete a defined task.
  3. Robotic automation of construction tasks is a growing area of research. For robots to successfully operate in a construction environment, sensing technology must be developed which allows for accurate detection of site geometry in a wide range of conditions. Much of the existing body of research on computer vision systems for construction automation focuses on pick-and-place operations such as stacking blocks or placing masonry elements. Very little research has focused on framing and related tasks. The research presented here aims to address this gap by designing and implementing computer vision algorithms for detection and measurement of building framing elements and testing those algorithms using realistic framing structures. These algorithms allow for a stationary RGB-D camera to accurately detect, identify, and measure the geometry of framing elements in a construction environment and match the detected geometry to provided building information modeling (BIM) data. The algorithms reduce identified framing elements to a simplified 3D geometric model, which allows for robust and accurate measurement and comparison with BIM data. This data can then be used to direct operations of construction robotic systems or other machines/equipment. The proposed algorithms were tested in a laboratory setting using an Intel RealSense D455 RGB-D camera, and initialmore »results indicate that the system is capable of measuring the geometry of timber-frame structures with accuracy on the order of a few centimeters.« less
  4. The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academicmore »exercise, it is the practice of the teams to work and interact as though they are groups within a company developing a product. The teams on this project include three collection management groups -- Electronic Theses and Dissertations (ETD), Tweets (TWT), and Web-Pages (WP) -- as well as the Front-end (FE) group and the Integration (INT) group to help provide the overarching structure for the application. This submission focuses on the work of the Integration (INT) team, which creates and administers Docker containers for each team in addition to administering the cluster infrastructure. Each container is a customized application environment that is specific to the needs of the corresponding team. Each team will have several of these containers set up in a pipeline formation to allow scaling and extension of the current system. The INT team also contributes to a cross-team effort for exploring the use of Elasticsearch and its internally associated database. The INT team administers the integration of the Ceph data storage system into the CS Department Cloud and provides support for interactions between containers and the Ceph filesystem. During formative stages of development, the INT team also has a role in guiding team evaluations of prospective container components and workflows. The INT team is responsible for the overall project architecture and facilitating the tools and tutorials that assist the other teams in deploying containers in a development environment according to mutual specifications agreed upon with each team. The INT team maintains the status of the Kubernetes cluster, deploying new containers and pods as needed by the collection management teams as they expand their workflows. This team is responsible for utilizing a continuous integration process to update existing containers. During the development stage the INT team collaborates specifically with the collection management teams to create the pipeline for the ingestion and processing of new collection documents, crossing services between those teams as needed. The INT team develops a reasoner engine to construct workflows with information goal as input, which are then programmatically authored, scheduled, and monitored using Apache Airflow. The INT team is responsible for the flow, management, and logging of system performance data and making any adjustments necessary based on the analysis of testing results. The INT team has established a Gitlab repository for archival code related to the entire project and has provided the other groups with the documentation to deposit their code in the repository. This repository will be expanded using Gitlab CI in order to provide continuous integration and testing once it is available. Finally, the INT team will provide a production distribution that includes all embedded Docker containers and sub-embedded Git source code repositories. The INT team will archive this distribution on the Virginia Tech Docker Container Registry and deploy it on the Virginia Tech CS Cloud. The INT-2020 team owes a sincere debt of gratitude to the work of the INT-2019 team. This is a very large undertaking and the wrangling of all of the products and processes would not have been possible without their guidance in both direct and written form. We have relied heavily on the foundation they and their predecessors have provided for us. We continue their work with systematic improvements, but also want to acknowledge their efforts Ibid. Without them, our progress to date would not have been possible.« less
  5. Robotics and automation are still considered a novelty in the U.S. construction industry, as compared to manufacturing, despite its proven advantages for production. Due to the continuing advancement of technology needed, there are limited applications of robotics in construction to date. To better identify the potential tasks that would benefit from the use of robotics on construction sites, we consider methods for assessing the craft labor tasks that occur in construction. In this paper, we decompose construction tasks of an observed activity of installation of stone veneer system and compared two systems of categorizing the construction tasks based on value added assessment and lean (waste) assessment of tasks. The analysis compares the two categorization systems using a matrix which highlights consistency in the alignment of value adding tasks, such as final placement, as well as ineffective tasks with type two muda, but discrepancies emerge regarding the idea of contributory tasks related to logistical support of construction activities. The focus of the discussion is derived from the intersection of contributory tasks with type one muda tasks. The contributory tasks offer an opportunity to reduce the use of craft labor for wasteful tasks elimination by leveraging automation and robotics.