skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Local Causal Discovery for Structural Evidence of Direct Discrimination
Identifying the causal pathways of unfairness is a critical objective for improving policy design and algorithmic decision-making. Prior work in causal fairness analysis often requires knowledge of the causal graph, hindering practical applications in complex or low-knowledge domains. Moreover, global discovery methods that learn causal structure from data can display unstable performance on finite samples, preventing robust fairness conclusions. To mitigate these challenges, we introduce local discovery for direct discrimination (LD3): a method that uncovers structural evidence of direct unfairness by identifying the causal parents of an outcome variable. LD3 performs a linear number of conditional independence tests relative to variable set size, and allows for latent confounding under the sufficient condition that all parents of the outcome are observed. We show that LD3 returns a valid adjustment set (VAS) under a new graphical criterion for the weighted controlled direct effect, a qualitative indicator of direct discrimination. LD3 limits unnecessary adjustment, providing interpretable VAS for assessing unfairness. We use LD3 to analyze causal fairness in two complex decision systems: criminal recidivism prediction and liver transplant allocation. LD3 was more time-efficient and returned more plausible results on real-world data than baselines, which took 46× to 5870× longer to execute.  more » « less
Award ID(s):
2212175
PAR ID:
10627065
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
18
ISSN:
2159-5399
Page Range / eLocation ID:
19349 to 19357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples. 
    more » « less
  2. Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real-world dataset show the effectiveness of our approaches. 
    more » « less
  3. null (Ed.)
    In recent years, many incidents have been reported where machine learning models exhibited discrimination among people based on race, sex, age, etc. Research has been conducted to measure and mitigate unfairness in machine learning models. For a machine learning task, it is a common practice to build a pipeline that includes an ordered set of data preprocessing stages followed by a classifier. However, most of the research on fairness has considered a single classifier based prediction task. What are the fairness impacts of the preprocessing stages in machine learning pipeline? Furthermore, studies showed that often the root cause of unfairness is ingrained in the data itself, rather than the model. But no research has been conducted to measure the unfairness caused by a specific transformation made in the data preprocessing stage. In this paper, we introduced the causal method of fairness to reason about the fairness impact of data preprocessing stages in ML pipeline. We leveraged existing metrics to define the fairness measures of the stages. Then we conducted a detailed fairness evaluation of the preprocessing stages in 37 pipelines collected from three different sources. Our results show that certain data transformers are causing the model to exhibit unfairness. We identified a number of fairness patterns in several categories of data transformers. Finally, we showed how the local fairness of a preprocessing stage composes in the global fairness of the pipeline. We used the fairness composition to choose appropriate downstream transformer that mitigates unfairness in the machine learning pipeline. 
    more » « less
  4. The widespread use of Artificial Intelligence (AI) based decision-making systems has raised a lot of concerns regarding potential discrimination, particularly in domains with high societal impact. Most existing fairness research focused on tackling bias relies heavily on the presence of class labels, an assumption that often mismatches real-world scenarios, which ignores the ubiquity of censored data. Further, existing works regard group fairness and individual fairness as two disparate goals, overlooking their inherent interconnection, i.e., addressing one can degrade the other. This paper proposes a novel unified method that aims to mitigate group unfairness under censorship while curbing the amplification of individual unfairness when enforcing group fairness constraints. Specifically, our introduced ranking algorithm optimizes individual fairness within the bounds of group fairness, uniquely accounting for censored information. Evaluation across four benchmark tasks confirms the effectiveness of our method in quantifying and mitigating both fairness dimensions in the face of censored data. 
    more » « less
  5. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less