Emergent vehicles will support a variety of connected applications, where a vehicle communicates with other vehicles or with the infrastructure to make a variety of decisions. Cooperative connected applications provide a critical foundational pillar for autonomous driving, and hold the promise of improving road safety, efficiency and environmental sustainability. However, they also induce a large and easily exploitable attack surface: an adversary can manipulate vehicular communications to subvert functionality of participating individual vehicles, cause catastrophic accidents, or bring down the transportation infrastructure. In this paper we outline a potential direction to address this critical problem through a resiliency framework, REDEM, based on machine learning. REDEM has several interesting features, including (1) smooth integration with the architecture of the underlying application, (2) ability to handle diverse communication attacks within the same underlying foundation, and (3) real-time detection and mitigation capability. We present the vision of REDEM, identify some key challenges to be addressed in its realization, and discuss the kind of evaluation/analysis necessary for its viability. We also present initial results from one instantiation of REDEM introducing resiliency in Cooperative Adaptive Cruise Control (CACC).
more »
« less
This content will become publicly available on May 25, 2026
A Comprehensive Survey on Basic Safety Message Attacks and Their Detection
Vehicular Ad-hoc Networks (VANETs) are a crucial component of Cooperative Intelligent Transportation Systems (C-ITS), enabling vehicles to communicate and share vital information to enhance road safety and efficiency. Basic Safety Messages (BSMs), periodically broadcast by vehicles to provide real-time kinematic data, form the foundation of numerous safety applications within VANETs. Ensuring the security of BSMs is paramount, as malicious entities can exploit vulnerabilities to launch attacks that could have catastrophic consequences. In this study, we provide a comprehensive analysis of BSM attacks and detection mechanisms in VANETs. We begin by outlining the system model, security requirements, and attacker models relevant to BSMs. Then, we categorize and describe a range of attacks, from simple position falsification to more sophisticated and evasive techniques, such as the SixPack attack. We also classify existing attack detection methods into machine learning-based, deep learning-based, plausibility and consistency-based, and software-defined networking (SDN)-based mechanisms, analyzing their effectiveness and limitations. Additionally, we highlight the challenges in securing BSMs, such as the trade-off between model accuracy and real-time performance. Future research directions are also discussed. This survey paper serves as a foundational step towards building safe, secure, and reliable cooperative intelligent transportation systems and their associated applications.
more »
« less
- PAR ID:
- 10627080
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- ISBN:
- 978-3-031-89359-9
- Page Range / eLocation ID:
- 110 to 130
- Subject(s) / Keyword(s):
- VANET Security Basic Safety Message BSM Attack Misbehavior Detection Position Falsification Plausibility Check
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Connected and autonomous vehicles (CAVs) rely on communication channels to improve safety and efficiency. However, this connectivity leaves them vulnerable to potential cyberattacks, such as false data injection (FDI) attacks. We can mitigate the effect of FDI attacks by designing secure control techniques. However, tuning control parameters is essential for the safety and security of such techniques, and there is no systematic approach to achieving that. In this article, our primary focus is on cooperative adaptive cruise control (CACC), a key component of CAVs. We develop a secure CACC by integrating model-based and learning-based approaches to detect and mitigate FDI attacks in real-time. We analyze the stability of the proposed resilient controller through Lyapunov stability analysis, identifying sufficient conditions for its effectiveness. We use these sufficient conditions and develop a reinforcement learning (RL)-based tuning algorithm to adjust the parameter gains of the controller, observer, and FDI attack estimator, ensuring the safety and security of the developed CACC under varying conditions. We evaluated the performance of the developed controller before and after optimizing parameters, and the results show about a 50% improvement in accuracy of the FDI attack estimation and a 76% enhancement in safe following distance with the optimized controller in each scenario.more » « less
-
Autonomous Vehicles (AVs) are revolutionizing transportation, but their reliance on interconnected cyber-physical systems exposes them to unprecedented cybersecurity risks. This study addresses the critical challenge of detecting real-time cyber intrusions in self-driving vehicles by leveraging a dataset from the Udacity self-driving car project. We simulate four high-impact attack vectors, Denial of Service (DoS), spoofing, replay, and fuzzy attacks, by injecting noise into spatial features (e.g., bounding box coordinates) to replicate adversarial scenarios. We develop and evaluate two lightweight neural network architectures (NN-1 and NN-2) alongside a logistic regression baseline (LG-1) for intrusion detection. The models achieve exceptional performance, with NN-2 attaining an AUC score of 93.15% and 93.15% accuracy, demonstrating their suitability for edge deployment in AV environments. Through explainable AI techniques, we uncover unique forensic fingerprints of each attack type, such as spatial corruption in fuzzy attacks and temporal anomalies in replay attacks, offering actionable insights for feature engineering and proactive defense. Visual analytics, including confusion matrices, ROC curves, and feature importance plots, validate the models' robustness and interpretability. This research sets a new benchmark for AV cybersecurity, delivering a scalable, field-ready toolkit for Original Equipment Manufacturers (OEMs) and policymakers. By aligning intrusion fingerprints with SAE J3061 automotive security standards, we provide a pathway for integrating machine learning into safety-critical AV systems. Our findings underscore the urgent need for security-by-design AI, ensuring that AVs not only drive autonomously but also defend autonomously. This work bridges the gap between theoretical cybersecurity and life-preserving engineering, offering a leap toward safer, more secure autonomous transportation.more » « less
-
The Unmanned aerial vehicles (UAVs) sector is fast-expanding. Protection of real-time UAV applications against malicious attacks has become an urgent problem that needs to be solved. Denial-of-service (DoS) attack aims to exhaust system resources and cause important tasks to miss deadlines. DoS attack may be one of the common problems of UAV systems, due to its simple implementation. In this paper, we present a software framework that offers DoS attack-resilient control for real-time UAV systems using containers: Container Drone. The framework provides defense mechanisms for three critical system resources: CPU, memory, and communication channel. We restrict the attacker's access to the CPU core set and utilization. Memory bandwidth throttling limits the attacker's memory usage. By simulating sensors and drivers in the container, a security monitor constantly checks DoS attacks over communication channels. Upon the detection of a security rule violation, the framework switches to the safety controller to mitigate the attack. We implemented a prototype quadcopter with commercially off-the-shelf (COTS) hardware and open-source software. Our experimental results demonstrated the effectiveness of the proposed framework defending against various DoS attacks.more » « less
-
In the field of multi-agent autonomous transportation, such as automated payload delivery or highway on-ramp merging, agents routinely exchange knowledge to optimize their shared objective and adapt to environmental novelties through Cooperative Multi-Agent Reinforcement Learning (CMARL) algorithms. This knowledge exchange between agents allows these systems to operate efficiently and adapt to dynamic environments. However, this cooperative learning process is susceptible to adversarial poisoning attacks, as highlighted by contemporary research. Particularly, the poisoning attacks where malicious agents inject deceptive information camouflaged within the differential noise, a pivotal element for differential privacy (DP)-based CMARL algorithms, pose formidable challenges to identify and overcome. The consequences of not addressing this issue are far-reaching, potentially jeopardizing safety-critical operations and the integrity of data privacy in these applications. Existing research has strived to develop anomaly detection based defense models to counteract conventional poisoning methods. Nonetheless, the recurring necessity for model offloading and retraining with labeled anomalous data undermines their practicality, considering the inherently dynamic nature of the safety-critical autonomous transportation applications. Further, it is imperative to maintain data privacy, ensure high performance, and adapt to environmental changes. Motivated by these challenges, this article introduces a novel defense mechanism against stealthy adversarial poisoning attacks in the autonomous transportation domain, termedReinforcing Autonomous Multi-agent Protection through Adversarial Resistance in Transportation(RAMPART). Leveraging a GAN model at each local node, RAMPART effectively filters out malicious advice in an unsupervised manner while generating synthetic samples for each state-action pair to accommodate environmental uncertainties and eliminate the need for labeled training data. Our extensive experimental analysis, conducted in a private payload delivery network—a common application in the autonomous multi-agent transportation domain—demonstrates that RAMPART successfully defends against a DP-exploited poisoning attack with a 30% attack ratio, achieving an F1 score of 0.852 and accuracy of 96.3% in heavy traffic environments.more » « less
An official website of the United States government
