skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Edge ML for CAN bus intrusion detection in AVs
Autonomous Vehicles (AVs) are revolutionizing transportation, but their reliance on interconnected cyber-physical systems exposes them to unprecedented cybersecurity risks. This study addresses the critical challenge of detecting real-time cyber intrusions in self-driving vehicles by leveraging a dataset from the Udacity self-driving car project. We simulate four high-impact attack vectors, Denial of Service (DoS), spoofing, replay, and fuzzy attacks, by injecting noise into spatial features (e.g., bounding box coordinates) to replicate adversarial scenarios. We develop and evaluate two lightweight neural network architectures (NN-1 and NN-2) alongside a logistic regression baseline (LG-1) for intrusion detection. The models achieve exceptional performance, with NN-2 attaining an AUC score of 93.15% and 93.15% accuracy, demonstrating their suitability for edge deployment in AV environments. Through explainable AI techniques, we uncover unique forensic fingerprints of each attack type, such as spatial corruption in fuzzy attacks and temporal anomalies in replay attacks, offering actionable insights for feature engineering and proactive defense. Visual analytics, including confusion matrices, ROC curves, and feature importance plots, validate the models' robustness and interpretability. This research sets a new benchmark for AV cybersecurity, delivering a scalable, field-ready toolkit for Original Equipment Manufacturers (OEMs) and policymakers. By aligning intrusion fingerprints with SAE J3061 automotive security standards, we provide a pathway for integrating machine learning into safety-critical AV systems. Our findings underscore the urgent need for security-by-design AI, ensuring that AVs not only drive autonomously but also defend autonomously. This work bridges the gap between theoretical cybersecurity and life-preserving engineering, offering a leap toward safer, more secure autonomous transportation.  more » « less
Award ID(s):
2321055
PAR ID:
10633668
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
International Telecommunication Union (ITU)
Date Published:
Journal Name:
ITU Journal on Future and Evolving Technologies
Volume:
6
Issue:
2
ISSN:
2616-8375
Page Range / eLocation ID:
170 to 182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    Recent developments in autonomous vehicle (AV) or connected AVs (CAVs) technology have led to predictions that fully self-driven vehicles could completely change the transportation network over the next decades. However, at this stage, AVs and CAVs are still in the development stage which requires various trails in the field and machine learning through autonomous driving miles on real road networks. Until the complete market adoption of autonomous technology, a long transition period of coexistence between conventional and autonomous cars would exist. It is important to study and develop the expected driving behavior of future autonomous cars and the traffic simulation platforms provide an opportunity for researchers and technology developers to implement and assess the different behaviors of self-driving vehicle technology before launching it to the actual ground. This study utilizes PTV VISSIM microsimulation platform to evaluate the mobility performance of unmanned vehicles at a 4-way signalized traffic intersection. The software contains three different AV-ready driving logics such as AV-cautious, AV-normal, and AV-aggressive which were tested against the performance of the conventional vehicles, and the results of the study revealed that the overall network operational performance improves with the progressive introduction of AVs using AV-normal, and AV-aggressive driving behaviors while the AV-cautious driving behavior stays conservative and deteriorates the traffic performance. 
    more » « less
  2. Trajectory prediction forecasts nearby agents’ moves based on their historical trajectories. Accurate trajectory prediction (or prediction in short) is crucial for autonomous vehicles (AVs). Existing attacks compromise the prediction model of a victim AV by directly manipulating the historical trajectory of an attacker AV, which has limited real-world applicability. This paper, for the first time, explores an indirect attack approach that induces prediction errors via attacks against the perception module of a victim AV. Although it has been shown that physically realizable attacks against LiDAR-based perception are possible by placing a few objects at strategic locations, it is still an open challenge to find an object location from the vast search space in order to launch effective attacks against prediction under varying victim AV velocities. Through analysis, we observe that a prediction model is prone to an attack focusing on a single point in the scene. Consequently, we propose a novel two-stage attack framework to realize the single-point attack. The first stage of predictionside attack efficiently identifies, guided by the distribution of detection results under object-based attacks against perception, the state perturbations for the prediction model that are effective and velocity-insensitive. In the second stage of location matching, we match the feasible object locations with the found state perturbations. Our evaluation using a public autonomous driving dataset shows that our attack causes a collision rate of up to 63% and various hazardous responses of the victim AV. The effectiveness of our attack is also demonstrated on a real testbed car 1. To the best of our knowledge, this study is the first security analysis spanning from LiDARbased perception to prediction in autonomous driving, leading to a realistic attack on prediction. To counteract the proposed attack, potential defenses are discussed. 
    more » « less
  3. Connected autonomous vehicles (CAVs) have fostered the development of intelligent transportation systems that support critical safety information sharing with minimum latency and making driving decisions autonomously. However, the CAV environment is vulnerable to different external and internal attacks. Authorized but malicious entities which provide wrong information impose challenges in preventing internal attacks. An essential requirement for thwarting internal attacks is to identify the trustworthiness of the vehicles. This paper exploits interaction provenance to propose a trust management framework for CAVs that considers both in-vehicle and vehicular network security incidents, supports flexible security policies and ensures privacy. The framework contains an interaction provenance recording and trust management protocol that extracts events from interaction provenance and calculates trustworthiness using fuzzy policies based on the events. Simulation results show that the framework is effective and can be integrated with the CAV stack with minimal computation and communication overhead. 
    more » « less
  4. Multi-sensor fusion has been widely used by autonomous vehicles (AVs) to integrate the perception results from different sensing modalities including LiDAR, camera and radar. Despite the rapid development of multi-sensor fusion systems in autonomous driving, their vulnerability to malicious attacks have not been well studied. Although some prior works have studied the attacks against the perception systems of AVs, they only consider a single sensing modality or a camera-LiDAR fusion system, which can not attack the sensor fusion system based on LiDAR, camera, and radar. To fill this research gap, in this paper, we present the first study on the vulnerability of multi-sensor fusion systems that employ LiDAR, camera, and radar. Specifically, we propose a novel attack method that can simultaneously attack all three types of sensing modalities using a single type of adversarial object. The adversarial object can be easily fabricated at low cost, and the proposed attack can be easily performed with high stealthiness and flexibility in practice. Extensive experiments based on a real-world AV testbed show that the proposed attack can continuously hide a target vehicle from the perception system of a victim AV using only two small adversarial objects. 
    more » « less
  5. Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of our daily life. About 50 corporations are actively working on AVs, including large companies such as Google, Ford, and Intel. Some AVs are already operating on public roads, with at least one unfortunate fatality recently on record. As a result, understanding bugs in AVs is critical for ensuring their security, safety, robustness, and correctness. While previous studies have focused on a variety of domains (e.g., numerical software; machine learning; and error-handling, concurrency, and performance bugs) to investigate bug characteristics, AVs have not been studied in a similar manner. Recently, two software systems for AVs, Baidu Apollo and Autoware, have emerged as frontrunners in the opensource community and have been used by large companies and governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG, and the US Department of Transportation). From these two leading AV software systems, this paper describes our investigation of 16,851 commits and 499 AV bugs and introduces our classification of those bugs into 13 root causes, 20 bug symptoms, and 18 categories of software components those bugs often affect. We identify 16 major findings from our study and draw broader lessons from them to guide the research community towards future directions in software bug detection, localization, and repair. 
    more » « less