Abstract We analyze an optical atomic clock using two-photon transitions in rubidium. Four one- and two-color excitation schemes to probe the and fine-structure states are considered in detail. We compare key characteristics of Rb and two-photon clocks. The clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths, low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics, we project a quantum-noise-limited relative clock stability at the -level, with integration timeτin seconds, and a relative accuracy of . We describe a potential architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm, which is conducive to optical communication and long-distance clock comparisons. Our work could be of interest in efforts to realize small and portable Rb clocks and in high-precision measurements of atomic properties of Rb -states.
more »
« less
This content will become publicly available on May 1, 2026
Quantum Enhanced Real-Time Sensing of Protein-Gold Adsorption Kinetics
Analyzing the kinetics of biological processes plays a significant role in understanding fundamental cellular functions. Many physics-based technologies used to study such processes are limited by the shot noise inherent to the coherent states of light. These technologies can greatly benefit from leveraging quantum probes to improve the sensitivity of measurements in cellular biology. The surface plasmon resonance technique has been used effectively to achieve label-free, real-time measurements of protein binding kinetics, which constitutes an important biological phenomenon occurring near the cell membrane. Here, we demonstrate the integration of this technique with the two-mode bright squeezed state having fewer fluctuations as compared to the coherent state to improve the sensitivity of measurement in studying a protein-gold adsorption process. We show 4 dB of squeezing as we record the signal-to-noise ratio as the function of time, and it is maintained throughout the kinetic process. The improved signal-to-noise ratio leads to a improvement in the sensitivity of measuring the observable rate constant . The quantum advantage as shown in terms of squeezing is achieved despite the total absorption of from the source until the final detection after the sensor. Overall, we provide the most practical setup for improving the sensitivity of the time-dependent measurements involved in various biological processes at the molecular level.
more »
« less
- Award ID(s):
- 2426699
- PAR ID:
- 10627218
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- PRX Life
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2835-8279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Shot noise measures out-of-equilibrium current fluctuations and is a powerful tool to probe the nature of current-carrying excitations in quantum systems. Recent shot-noise measurements in the heavy-fermion strange metal exhibit a strong suppression of the Fano factor ( )—the ratio of the current noise to the average current in the dc limit. This system is representative of metals in which electron correlations are extremely strong. Here we carry out the first theoretical study on the shot noise of diffusive metals in the regime of strong correlations. A Boltzmann-Langevin equation formulation is constructed in a quasiparticle description in the presence of strong correlations. We find that in such a correlation regime. Thus, we establish the aforementioned Fano factor as universal to Fermi liquids, and we show that the Fano factor suppression observed in experiments on necessitates a loss of the quasiparticles. Our work opens the door to systematic theoretical studies of shot noise as a means of characterizing strongly correlated metallic phases and materials. Published by the American Physical Society2024more » « less
-
This Letter reports new results from the HAYSTAC experiment’s search for dark matter axions in our galactic halo. It represents the widest search to date that utilizes squeezing to realize subquantum limited noise. The new results cover of newly scanned parameter space in the mass ranges and . No statistically significant evidence of an axion signal was observed, excluding couplings and at the 90% confidence level over the respective region. By combining this data with previously published results using HAYSTAC’s squeezed state receiver, a total of of parameter space has now been scanned between , excluding at the 90% confidence level. These results demonstrate the squeezed state receiver’s ability to probe axion models over a significant mass range while achieving a scan rate enhancement relative to a quantum-limited experiment. Published by the American Physical Society2025more » « less
-
We propose using highly excited cyclotron states of a trapped electron to detect meV axion and dark-photon dark matter, marking a significant improvement over our previous proposal and demonstration [One-electron quantum cyclotron as a milli-ev dark-photon detector, .]. When the axion mass matches the cyclotron frequency , the cyclotron state is resonantly excited, with a transition probability proportional to its initial quantum number, . The sensitivity is enhanced by taking . By optimizing key experimental parameters, we minimize the required averaging time for cyclotron detection to s, permitting detection of such a highly excited state before its decay. An open–end-cap trap design enables the external photon signal to be directed into the trap, rendering our background-free detector compatible with large focusing cavities, such as the BREAD proposal, while capitalizing on their strong magnetic fields. Furthermore, the axion conversion rate can be coherently enhanced by incorporating layers of dielectrics with alternating refractive indices within the cavity. Collectively, these optimizations enable us to probe the QCD axion parameter space from 0.1 to 2.3 meV (25–560 GHz), covering a substantial portion of the predicted postinflationary QCD axion mass range. This sensitivity corresponds to probing the kinetic mixing parameter of the dark photon down to . Published by the American Physical Society2025more » « less
-
is an experimental search for dark matter axions. It uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. is designed to be sensitive to Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnisky (DFSZ) QCD axion models in the 10–200 MHz ( ) range, and to axions with over 5–30 MHz as an extended goal. In this work, we present the electromagnetic modeling of the response of the experiment to an axion signal over the full frequency range of , which extends from the low-frequency, lumped-element limit to a regime where the axion Compton wavelength is only a factor of 2 larger than the detector size. With these results, we determine the live time and sensitivity of the experiment. The primary science goal of sensitivity to DFSZ axions across 30–200 MHz can be achieved with a live scan time of 2.9 years.more » « less
An official website of the United States government
