skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Parametric Analysis of Inter-Farm Wake Interactions in Offshore Wind Farm Projects Along the US East Coast
Abstract This study explores the effects of various parameters on wake interactions between offshore wind farms, with a particular focus on the Revolution-Southfork Wind and Vineyard Wind projects. The research examines how factors such as Euclidean distances, turbine-rated power, rotor diameters, and the number of turbines at upstream farms impact the annual energy production (AEP) of downstream installations. The results reveal significant variations in AEP losses, with the Nygaard model demonstrating a marked sensitivity to changes in turbine-rated power, rotor diameter, and the differing Euclidean distances between farms. Our findings indicate that strategic planning regarding turbine characteristics and farm placements is essential for optimizing energy output and reducing wake-induced power losses. These insights lay the groundwork for further analytical research.  more » « less
Award ID(s):
2347702
PAR ID:
10627275
Author(s) / Creator(s):
;
Publisher / Repository:
IOPscience
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
3016
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As the world transitions towards sustainable energy sources, offshore wind farms are one of the options under consideration in several countries. Some countries, for instance, the Netherlands, Denmark, Germany, the UK, and China, have already constructed multiple offshore wind farms. Other countries, such as the United States in North America and Brazil in South America, are making movements toward offshore wind. One potential problem is that offshore wind farm wakes can extend for longer distances than onshore, placing challenges on potential wake losses due to farm-to-farm interaction effects. This study proposes a farm-to-farm benchmark to complement ongoing experimental and computational efforts. We consider eight engineering wake models and 31 cases of pairs of existing offshore wind farms, totaling 248 simulations. The results varied according to the engineering wake model applied, alignment (or not) of neighboring wind farms with the prevailing wind direction, and wind turbine capacity. The range of AEP loss significantly varied between 0.075% and around 2.3% in the extreme cases. 
    more » « less
  2. null (Ed.)
    Wind turbine wakes are responsible for power losses and added fatigue loads of wind turbines. Providing capabilities to predict accurately wind-turbine wakes for different atmospheric conditions and turbine settings with low computational requirements is crucial for the optimization of wind-farm layout, and for improving wind-turbine controls aiming to increase annual energy production (AEP) and reduce the levelized cost of energy (LCOE) for wind power plants. In this work, wake measurements collected with a scanning Doppler wind Li- DAR for broad ranges of the atmospheric static stability regime and incoming wind speed are processed through K-means clustering. For computational feasibility, the cluster analysis is performed on a low-dimensional embedding of the collected data, which is obtained through proper orthogonal decomposition (POD). After data compression, we perform K-means of the POD modes to identify cluster centers and corresponding members from the LiDAR data. The different cluster centers allow us to visualize wake variability over ranges of atmospheric, wind, and turbine parameters. The results show that accurate mapping of the wake variability can be achieved with K-means clustering, which represents an initial step to develop data-driven wake models for accurate and low-computational-cost simulations of wind farms. 
    more » « less
  3. null (Ed.)
    This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters. 
    more » « less
  4. To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors. 
    more » « less
  5. As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated. 
    more » « less