Abstract A field experiment was conducted to investigate the effects of the thrust force induced by utility-scale wind turbines on the incoming wind field. Five wind profiling LiDARs and a scanning Doppler pulsed wind LiDAR were deployed in the proximity of a row of four wind turbines located over relatively flat terrain, both before and after the construction of the wind farm. The analysis of the LiDAR data collected during the pre-construction phase enables quantifying the wind map of the site, which is then leveraged to correct the post-construction LiDAR data and isolate rotor-induced effects on the incoming wind field. The analysis of the profiling LiDAR data allows for the identification of the induction zone upstream of the turbine rotors, with an increasing velocity deficit moving from the top tip towards the bottom tip of the rotor. The largest wind speed reduction (about 5%) is observed for convective conditions and incoming hub-height wind speed between cut-in and rated wind speeds. The scanning LiDAR data indicate the presence of speedup regions within the gaps between adjacent turbine rotors. Speedup increases with reducing the transverse distance between the rotors, atmospheric instability (maximum 15%), while a longer streamwise extent of the speedup region is observed under stable atmospheric conditions.
more »
« less
Blockage and speedup in the proximity of an onshore wind farm: A scanning wind LiDAR experiment
To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors.
more »
« less
- Award ID(s):
- 1916776
- PAR ID:
- 10490019
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Journal of Renewable and Sustainable Energy
- Volume:
- 15
- Issue:
- 5
- ISSN:
- 1941-7012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotor‐induced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as k‐means cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and low‐level jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate wind‐turbine and wind‐farm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.more » « less
-
null (Ed.)This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters.more » « less
-
Abstract This study explores the effects of various parameters on wake interactions between offshore wind farms, with a particular focus on the Revolution-Southfork Wind and Vineyard Wind projects. The research examines how factors such as Euclidean distances, turbine-rated power, rotor diameters, and the number of turbines at upstream farms impact the annual energy production (AEP) of downstream installations. The results reveal significant variations in AEP losses, with the Nygaard model demonstrating a marked sensitivity to changes in turbine-rated power, rotor diameter, and the differing Euclidean distances between farms. Our findings indicate that strategic planning regarding turbine characteristics and farm placements is essential for optimizing energy output and reducing wake-induced power losses. These insights lay the groundwork for further analytical research.more » « less
-
Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.more » « less
An official website of the United States government

