skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Temperature and precipitation affect the water fetching time burden in Sub-Saharan Africa
Abstract In Sub-Saharan Africa (SSA), over 75% of households lack on-premises water access, requiring residents to spend time walking to collect water from outside their homes – a time burden that falls disproportionately on women and girls. Climate change is predicted to alter precipitation and temperature patterns in SSA, which could impact household water access. Here, we use spatial first differences to assess the causal effects of weather on water fetching walk time using household survey data (n = 979,759 observations from 31 countries) merged with geo- and temporally-linked precipitation and temperature data over time periods ranging from 7 to 365 days. We find increases in precipitation reduce water fetching times; a 1 cm increase in weekly rainfall over the past year decreases walking time by 3.5 min. Higher temperatures increase walk times, with a 1°C increase in temperature over the past year increasing walking time by 0.76 min. Rural household water fetching times are more impacted by recent weather compared to urban households; however, electricity access in rural communities mitigates the effect. Our findings suggest that future climate change will increase the water fetching burden in SSA, but that co-provision of electricity and water infrastructure may be able to alleviate this burden.  more » « less
Award ID(s):
2125913
PAR ID:
10627371
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Introduction Water fetching for household needs can cause injury, but documentation of the burden of harm globally has been limited. We described the frequency, characteristics and correlates of water-fetching injuries in 24 sites in 21 low-income and middle-income countries in Asia, Africa and Latin America and the Caribbean. Methods In a survey of 6291 randomly selected households, respondents reported whether and how they had experienced water-fetching injuries. Responses were coded for injury type, mechanism, bodily location and physical context. We then identified correlates of injury using a multilevel, mixed-effects logistic regression model. Results Thirteen per cent of respondents reported at least one water-fetching injury. Of 879 injuries, fractures and dislocations were the most commonly specified type (29.2%), and falls were the most commonly specified mechanism (76.4%). Where specified, 61.1% of injuries occurred to the lower limbs, and dangerous terrain (69.4%) was the most frequently reported context. Significant correlates included being female (aOR=1.50, 95% CI 1.15 to 1.96); rural (aOR=4.80, 95% CI 2.83 to 8.15) or periurban residence (aOR=2.75, 95% CI 1.64 to 4.60); higher household water insecurity scores (aOR=1.09, 95% CI 1.07 to 1.10) and reliance on surface water (aOR=1.97, 95% CI 1.21 to 3.22) or off-premise water sources that required queueing (aOR=1.72, 95% CI 1.19 to 2.49). Conclusion These data suggest that water-fetching injuries are an underappreciated and largely unmeasured public health challenge. We offer guidelines for comprehensive data collection on injuries to better capture the true burden of inadequate water access. Such data can guide the design of interventions to reduce injury risk and promote equitable water access solutions. 
    more » « less
  2. The study aims to analyze climate variability and farmers’ perception in Southern Ethiopia. Gridded annual temperature and precipitation data were obtained from the National Meteorological Agency (NMA) of Ethiopia for the period between 1983 and 2014. Using a multistage sampling technique, 403 farm households were surveyed to substantiate farmers’ perceptions about climate variability and change. The study applied a nonparametric Sen’s slope estimator and Mann–Kendall’s trend tests to detect the magnitude and statistical significance of climate variability and binary logit regression model to find factors influencing farm households’ perceptions about climate variability over three agroecological zones (AEZs). The trend analysis reveals that positive trends were observed in the annual maximum temperature, 0.02°C/year ( p < 0.01 ) in the lowland and 0.04°C/year ( p < 0.01 ) in the highland AEZs. The positive trend in annual minimum temperature was consistent in all AEZs and significant ( p < 0.01 ). An upward trend in the annual total rainfall (10 mm/year) ( p < 0.05 ) was recorded in the midland AEZ. Over 60% of farmers have perceived increasing temperature and decreasing rainfall in all AEZs. However, farmers’ perception about rainfall in the midland AEZ contradicts with meteorological analysis. Results from the binary logit model inform that farmers’ climate change perceptions are significantly influenced by their access to climate and market information, agroecology, education, agricultural input, and village market distance. Based on these results, it is recommended to enhance farm households’ capacity by providing timely weather and climate information along with institutional actions such as agricultural extension services. 
    more » « less
  3. ABSTRACT Research on household water insecurity continues to overemphasize water scarcity and rural contexts, resulting in a poorer understanding of water insecurity in urban, water-abundant settings. At the same time, while the dimensions of water insecurity include availability, access, utilization and stability, current instruments focus on access to water, thus, inadequately explore people's experiences utilizing available water. This study aimed to characterize and explore the impacts of household water insecurity on residents of the city of Belém, Pará, Brazil, where water is available and access to piped municipal water is common, but its provision and quality vary. We applied the Household Water Insecurity Experiences Scale (HWISE) to evaluate water insecurity in 188 households (110 LSES; 78 HSES). In a subset of 47 households, we complemented the HWISE with a novel instrument, developed via participant observation, that assessed all points of water access and use within the home. Per HWISE, 28% of households were water insecure, with a higher proportion of water insecurity occurring in LSES households. Data collected via our complementary instrument indicate that HWISE underestimated water insecurity in our sample, as 87% of the subset households reported issues affecting their utilization of water regardless of household water insecurity status. 
    more » « less
  4. Many private households spend considerable amounts of time accessing water, for instance by walking to and queuing at public access points, or by filling storage vessels at taps with low flow rates. This time has an opportunity cost, which can be substantial and may impact which water services and quantities of water households demand. In a novel form of diary study, we gathered detailed water consumption and time use data from 50 households in five informal settlements of the Indian metropolis Pune, accompanied by a household survey and in-depth interviews. With the data, we characterize water collection behaviors and assign monetary values to water procurement time. We statistically analyze the effects of time cost on consumed quantities in several two-level mixed-effect models. Household members in our sample spend up to several hours each day filling storage vessels, even if a private connection to the piped network is available. Average time cost amounted to the equivalent of 4.23–13.81% of monthly household cash income. Our analyses indicate that procurement time reduces quantitative water demand in a significant way. The households incurring the highest per-unit time cost consumed water quantities below minimum levels recommended for human health. This substantiates that time costs can impede access to water and are a relevant issue for water management and policy. 
    more » « less
  5. Li, Wenliang (Ed.)
    Reduced river flows and groundwater depletion as a result of climate change and population growth have increased the effort and difficulty accessing and processing water. In turn, residential water costs from municipal utilities are predicted to rise to unaffordable rates for poor residential water customers. Building on a regional conjunctive use model with future climate scenarios and 50-year future water supply plans, our study communicates the effects of climate change on poor people in El Paso, Texas, as water becomes more difficult and expensive to obtain in future years. Four scenarios for future water supply and future water costs were delineated based on expected impacts of climate change and groundwater depletion. Residential water use was calculated by census tract in El Paso, using basic needs indoor water use and evaporative cooling use as determinants of household water consumption. Based on household size and income data from the US Census, fraction of household income spent on water was determined. Results reveal that in the future, basic water supply will be a significant burden for 40% of all households in El Paso. Impacts are geographically concentrated in poor census tracts. Our study revealed that negative impacts from water resource depletion and increasing populations in El Paso will lead to costly and difficult water for El Paso water users. We provide an example of how to connect future resource scenarios, including those affected by climate change, to challenges of affordability for vulnerable consumers. 
    more » « less