Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.
more »
« less
This content will become publicly available on June 15, 2026
Flexible Focalization: An Addititively Manufactured, Conformal, Low-Profile Multilayer Transmitarray for Space-Based 5G/MM Wave Applications
For the first time, a 28 GHz additively manufactured multilayer flexible transmitarray (TA) system is introduced, utilizing inkjet printing on thin, flexible Polyethylene Terephthalate (PET) substrates.The 5.4 x 5.4 cm TA achieves ±28° 3 dB angular coverage in two axes, a solid angular coverage of 0.45 sr, and a peak gain of 15.3 dBi, all within a compact 2.6 cm thickness. Flexibility tests under varying bend radii demonstrate robust performance for conformal applications. This scalable, low-cost design sets the stage for large-area, inkjet printed flexible RF/mmWave modules. By leveraging additive manufacturing, this lightweight, ultra-low form factor TA system represents a crucial innovation in integration of TAs with space-based 5G communication architectures.
more »
« less
- Award ID(s):
- 2322366
- PAR ID:
- 10627374
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-1409-9
- Page Range / eLocation ID:
- 851 to 854
- Format(s):
- Medium: X
- Location:
- San Francisco, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nanoliter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
-
Direct write Inkjet Printing is a versatile additive manufacturing technology that allows for the fabrication of multiscale structures with dimensions spanning from nano to cm scale. This is made possible due to the development of novel dispensing tools, enabling controlled and precise deposition of fluid with a wide range of viscosities (1 – 50 000 mPas) in nano-liter volumes. As a result, Inkjet printing has been recognized as a potential low-cost alternative for several established manufacturing methods, including cleanroom fabrication. In this paper, we present a characterization study of PEDOT: PSS polymer ink deposition printing process realized with the help of an automated, custom Direct Write Inkjet system. PEDOT: PSS is a highly conductive ink that possesses good film forming capabilities. Applications thus include printing thin films on flexible substrates for tactile (touch) sensors. We applied the Taguchi Design of Experiment (DOE) method to produce the optimal set of PEDOT:PSS ink dispensing parameters, to study their influence on the resulting ink droplet diameter. We experimentally determined that the desired outcome of a printed thin film with minimum thickness is directly related to 1) the minimum volume of dispensed fluid and 2) the presence of a preprocessing step, namely air plasma treatment of the Kapton substrate. Results show that an ink deposit with a minimum diameter of 482 μm, and a thin film with approximately 300 nm thickness were produced with good repeatability.more » « less
-
null (Ed.)Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications.more » « less
-
Abstract Resistors are basic yet essential circuit components that must be fabricated with high precision at low cost if they are to be viable for flexible electronic applications. Inkjet printing is one of many additive fabrication techniques utilized to realize this goal. In this work, a process termed self-aligned capillarity-assisted lithography for electronics (SCALE) was used to fabricate inkjet-printed resistors on flexible substrates. Capillary channels and reservoirs imprinted onto flexible substrates enabled precise control of resistor geometry and straightforward alignment of materials. More than 300 devices were fabricated using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the resistive material and silver as the electrode material. By varying PEDOT:PSS ink formulation and resistor geometry, resistances spanning from 170 Ω to 3.8 MΩ were achieved. Over 98% of devices were functional and the relative standard deviation in resistance ranged from 3% to 18% depending on resistor length and ink composition. The resistors showed no significant change in resistance after 10 000 cycles of bend testing at 1.6% surface tensile strain. In summary, this work demonstrated a fully roll-to-roll compatible process for inkjet printing resistors with superior properties.more » « less
An official website of the United States government
