skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 7, 2025

Title: Two-sided permutation statistics via symmetric functions
Abstract Given a permutation statistic$$\operatorname {\mathrm {st}}$$, define its inverse statistic$$\operatorname {\mathrm {ist}}$$by. We give a general approach, based on the theory of symmetric functions, for finding the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$whenever$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to a number of descent statistics, including the descent number, the peak number, the left peak number, the number of up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$can be expressed as a simple sum involving products of the polynomials giving the (individual) distributions of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$. Our work leads to a rederivation of Stanley’s generating function for doubly alternating permutations, as well as several conjectures concerning real-rootedness and$$\gamma $$-positivity.  more » « less
Award ID(s):
2316181
PAR ID:
10627481
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency. 
    more » « less
  2. Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras. 
    more » « less
  3. Abstract Let$$\mathrm {R}$$be a real closed field. Given a closed and bounded semialgebraic set$$A \subset \mathrm {R}^n$$and semialgebraic continuous functions$$f,g:A \rightarrow \mathrm {R}$$such that$$f^{-1}(0) \subset g^{-1}(0)$$, there exist an integer$$N> 0$$and$$c \in \mathrm {R}$$such that the inequality (Łojasiewicz inequality)$$|g(x)|^N \le c \cdot |f(x)|$$holds for all$$x \in A$$. In this paper, we consider the case whenAis defined by a quantifier-free formula with atoms of the form$$P = 0, P>0, P \in \mathcal {P}$$for some finite subset of polynomials$$\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$$, and the graphs of$$f,g$$are also defined by quantifier-free formulas with atoms of the form$$Q = 0, Q>0, Q \in \mathcal {Q}$$, for some finite set$$\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$$. We prove that the Łojasiewicz exponent in this case is bounded by$$(8 d)^{2(n+7)}$$. Our bound depends ondandnbut is independent of the combinatorial parameters, namely the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. The previous best-known upper bound in this generality appeared inP. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991)and depended on the sum of degrees of the polynomials defining$$A,f,g$$and thus implicitly on the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)). 
    more » « less
  4. Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient$${\mathcal {M}}^{\operatorname {GIT}}$$, as a Baily–Borel compactification of a ball quotient$${(\mathcal {B}_4/\Gamma )^*}$$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup$${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification$${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$$. The spaces$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients. 
    more » « less
  5. Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$). 
    more » « less