skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 1, 2025

Title: Non-isomorphic smooth compactifications of the moduli space of cubic surfaces
Abstract

The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient${\mathcal {M}}^{\operatorname {GIT}}$, as a Baily–Borel compactification of a ball quotient${(\mathcal {B}_4/\Gamma )^*}$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$. The spaces${\mathcal {M}}^{\operatorname {K}}$and${\overline {\mathcal {B}_4/\Gamma }}$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that${\mathcal {M}}^{\operatorname {K}}$and${\overline {\mathcal {B}_4/\Gamma }}$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.

 
more » « less
Award ID(s):
2101640
NSF-PAR ID:
10504954
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Nagoya Mathematical Journal
Volume:
254
ISSN:
0027-7630
Page Range / eLocation ID:
315 to 365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We prove that the rational cohomology group$H^{11}(\overline {\mathcal {M}}_{g,n})$vanishes unless$g = 1$and$n \geq 11$. We show furthermore that$H^k(\overline {\mathcal {M}}_{g,n})$is pure Hodge–Tate for all even$k \leq 12$and deduce that$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$is surprisingly well approximated by a polynomial inq. In addition, we use$H^{11}(\overline {\mathcal {M}}_{1,11})$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology.

     
    more » « less
  2. Abstract

    For any subset$Z \subseteq {\mathbb {Q}}$, consider the set$S_Z$of subfields$L\subseteq {\overline {\mathbb {Q}}}$which contain a co-infinite subset$C \subseteq L$that is universally definable inLsuch that$C \cap {\mathbb {Q}}=Z$. Placing a natural topology on the set${\operatorname {Sub}({\overline {\mathbb {Q}}})}$of subfields of${\overline {\mathbb {Q}}}$, we show that ifZis not thin in${\mathbb {Q}}$, then$S_Z$is meager in${\operatorname {Sub}({\overline {\mathbb {Q}}})}$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$\mathcal {O}_L$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$\exists $-definable subset of an algebraic extension of${\mathbb Q}$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.

     
    more » « less
  3. Abstract

    Given a family$\mathcal{F}$of bipartite graphs, theZarankiewicz number$z(m,n,\mathcal{F})$is the maximum number of edges in an$m$by$n$bipartite graph$G$that does not contain any member of$\mathcal{F}$as a subgraph (such$G$is called$\mathcal{F}$-free). For$1\leq \beta \lt \alpha \lt 2$, a family$\mathcal{F}$of bipartite graphs is$(\alpha,\beta )$-smoothif for some$\rho \gt 0$and every$m\leq n$,$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$(\alpha,\beta )$-smooth family$\mathcal{F}$, there exists$k_0$such that for all odd$k\geq k_0$and sufficiently large$n$, any$n$-vertex$\mathcal{F}\cup \{C_k\}$-free graph with minimum degree at least$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$is bipartite. In this paper, we strengthen their result by showing that for every real$\delta \gt 0$, there exists$k_0$such that for all odd$k\geq k_0$and sufficiently large$n$, any$n$-vertex$\mathcal{F}\cup \{C_k\}$-free graph with minimum degree at least$\delta n^{\alpha -1}$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$\mathcal{F}$consisting of the single graph$K_{s,t}$when$t\gg s$. We also prove an analogous result for$C_{2\ell }$-free graphs for every$\ell \geq 2$, which complements a result of Keevash, Sudakov and Verstraëte.

     
    more » « less
  4. We study the spaces of twisted conformal blocks attached to a$\Gamma$-curve$\Sigma$with marked$\Gamma$-orbits and an action of$\Gamma$on a simple Lie algebra$\mathfrak {g}$, where$\Gamma$is a finite group. We prove that if$\Gamma$stabilizes a Borel subalgebra of$\mathfrak {g}$, then the propagation theorem and factorization theorem hold. We endow a flat projective connection on the sheaf of twisted conformal blocks attached to a smooth family of pointed$\Gamma$-curves; in particular, it is locally free. We also prove that the sheaf of twisted conformal blocks on the stable compactification of Hurwitz stack is locally free. Let$\mathscr {G}$be the parahoric Bruhat–Tits group scheme on the quotient curve$\Sigma /\Gamma$obtained via the$\Gamma$-invariance of Weil restriction associated to$\Sigma$and the simply connected simple algebraic group$G$with Lie algebra$\mathfrak {g}$. We prove that the space of twisted conformal blocks can be identified with the space of generalized theta functions on the moduli stack of quasi-parabolic$\mathscr {G}$-torsors on$\Sigma /\Gamma$when the level$c$is divisible by$|\Gamma |$(establishing a conjecture due to Pappas and Rapoport).

     
    more » « less
  5. Abstract

    For$g\ge 2$and$n\ge 0$, let$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$\mathbb {Z}/2\mathbb {Z}$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$\mathcal {H}_{g, n}$. Using this graph complex, we give a sum-over-graphs formula for the$S_n$-equivariant weight zero compactly supported Euler characteristic of$\mathcal {H}_{g, n}$. This formula allows for the computer-aided calculation, for each$g\le 7$, of the generating function$\mathsf {h}_g$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$\Delta $-complex. We use these complexes to generalize our formula for$\mathsf {h}_g$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves.

     
    more » « less