skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-isomorphic smooth compactifications of the moduli space of cubic surfaces
Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient$${\mathcal {M}}^{\operatorname {GIT}}$$, as a Baily–Borel compactification of a ball quotient$${(\mathcal {B}_4/\Gamma )^*}$$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup$${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification$${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$$. The spaces$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.  more » « less
Award ID(s):
2101640
PAR ID:
10504954
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Nagoya Mathematical Journal
Volume:
254
ISSN:
0027-7630
Page Range / eLocation ID:
315 to 365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology. 
    more » « less
  2. Abstract Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category$${\mathcal {C}}$$and$${\mathcal {C}}$$-module category$${\mathcal {M}}$$, we introduce a version of the Drinfeld center$${\mathcal {Z}}({\mathcal {C}})$$of$${\mathcal {C}}$$adapted for$${\mathcal {M}}$$; we refer to this category as thereflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$of$${\mathcal {M}}$$. Just like$${\mathcal {Z}}({\mathcal {C}})$$is a canonical braided monoidal category attached to$${\mathcal {C}}$$, we show that$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$is a canonical braided module category attached to$${\mathcal {M}}$$; its properties are investigated in detail. Our second goal pertains to when$${\mathcal {C}}$$is the category of modules over a quasitriangular Hopf algebraH, and$${\mathcal {M}}$$is the category of modules over anH-comodule algebraA. We show that the reflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$here is equivalent to a category of modules over an explicit algebra, denoted by$$R_H(A)$$, which we call thereflective algebraofA. This result is akin to$${\mathcal {Z}}({\mathcal {C}})$$being represented by the Drinfeld double$${\operatorname {Drin}}(H)$$ofH. We also study the properties of reflective algebras. Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangularH-comodule algebras, and we examine their corresponding quantumK-matrices; this yields solutions to the qRE. We also establish that the reflective algebra$$R_H(\mathbb {k})$$is an initial object in the category of quasitriangularH-comodule algebras, where$$\mathbb {k}$$is the ground field. The case whenHis the Drinfeld double of a finite group is illustrated. 
    more » « less
  3. Abstract We study collections of subrings of$$H^*({\overline {\mathcal {M}}}_{g,n})$$that are closed under the tautological operations that map cohomology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flexible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for the$$\ell $$-adic Galois representations and Hodge structures that appear in$$H^k({\overline {\mathcal {M}}}_{g,n})$$for$$k = 13$$,$$14$$and$$15$$. We also show that$$H^4({\overline {\mathcal {M}}}_{g,n})$$is generated by tautological classes for allgandn, confirming a prediction of Arbarello and Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of$${\mathcal {M}}_{7,n}$$is generated by algebraic cycle classes, for$$n \leq 3$$. 
    more » « less
  4. Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
    more » « less
  5. Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras. 
    more » « less