A subset of salivary proteins (SPs) upregulates in response to a quinine-containing diet. The presence of these SPs then results in decreased bitter taste responding and taste nerve signaling. Bitter taste receptors in the oral cavity are also found in the stomach and intestines and contribute to behaviors that are influenced by post-oral signaling. It has been previously demonstrated that after several pairings of post-orally infused bitter stimuli and a neutral flavor, animals learn to avoid the flavor that was paired with gastric bitter, this is referred to as conditioned avoidance. Furthermore, animals will decrease licking of a neutral solution within a test session, when licking is paired with an intragastric bitter infusion; this has been described as within-session suppression. We used these paradigms to test the role of SPs in behaviors influenced by post-oral signaling. In both paradigms, the animal is given a test solution directly into the stomach (with or without quinine, and with or without SPs), and the infusions are self-administered by licking to a neutral solution (Kool-Aid). Quinine successfully conditioned a flavor avoidance, but, in a separate trial, we were unable to detect conditioning in the presence of SPs from donor animals. Likewise, quinine was able to suppress licking within the conditioned suppression paradigm, but the effect of the bitter was blocked in the presence of saliva containing SPs. Together, these data suggest that behaviors driven by post-oral signaling can be altered by SPs.
more »
« less
This content will become publicly available on March 1, 2026
Sex differences in diet-mediated salivary protein upregulation
Our lab previously established that repeated exposure to a bitter diet can increase salivary protein (SP) expression, which corresponds to an increase in acceptance of the bitter stimulus. However, this work was exclusively in male rodents, here we examine sex differences. We found that there are no differences in SP expression (experiment 1) or quinine diet acceptance (experiment 2) across stage of estrous cycle. Yet, males and females differ in feeding behaviors, SP expression, and responses to a quinine diet (experiment 3). On a quinine diet, males accepted the diet much faster than females. Males displayed a compensatory increase in meal number as meal size and rate of feeding decreased with initial exposure to a quinine diet, whereas females decreased meal size and rate of feeding with no compensation in meal number. There were sex differences in SP expression at day 14 of quinine exposure but these were gone by day 24. Both sexes increased acceptance of quinine in a brief access taste test after the feeding trial concluded. These data suggest that males and females have different patterns of bitter diet acceptance, but extended exposure to quinine diet still results in altered bitter taste responding and changes in SP profiles in females.
more »
« less
- Award ID(s):
- 1942291
- PAR ID:
- 10627488
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Appetite
- Volume:
- 207
- Issue:
- C
- ISSN:
- 0195-6663
- Page Range / eLocation ID:
- 107888
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Orangutans show a pronounced sexual dimorphism, with flanged males (i.e., males with fully grown secondary sexual characteristics) reaching twice the size of adult females. Furthermore, adult orangutans show sex-specific dispersal and activity patterns. This study investigates sex differences in adult foraging behavior and sheds light on how these differences develop in immatures. We analyzed 11 years of feeding data on ten adult female, seven flanged male, and 14 immature Bornean orangutans ( Pongo pygmaeus wurmbii ) at Tuanan in Central Kalimantan, Indonesia. We found that the diets of the adult females were significantly broader and required more processing steps before ingestion than the diets of flanged males. We also found evidence for a similar difference in overall diet repertoire sizes. For the immatures, we found that whereas females reached 100% of their mothers’ diet spectrum size by the age of weaning, males reached only around 80%. From the age of 4 years on (i.e., years before being weaned) females had significantly broader daily diets than males. We found no difference in daily or overall diet processing intensity of immature males and females but found preliminary evidence that immature males included fewer items of their mother’s diet in their own diets that were processing-intensive. Overall, our results suggest that by eating a broader variety and more complex to process food items, female orangutans go to greater lengths to achieve a balanced diet than males do. These behavioral differences are not just apparent in adult foraging behavior but also reflected in immature development from an early age on. Significance Statement In many species, males and females have different nutritional needs and are thus expected to show sex-specific foraging behavior. Sex differences in several aspects of foraging behavior have been found in various species, but it remains largely unclear when and how those develop during ontogeny, which is especially relevant for long-lived altricial species that learn foraging skills over many years. In our study, we analyzed a cross-sectional and longitudinal data set containing more than 750,000 feeding events of adult and immature Bornean orangutans ( Pongo pygmaeus wurmbii ). We found that adult females had significantly broader and more complex diets than males. We also found that these differences started to develop during infancy, suggesting that immature orangutans prepare for their sex-specific foraging niches long before those become physiologically relevant while they are still in constant association with their mothers and before being frequently exposed to other role models.more » « less
-
Abstract BackgroundSexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others’ research has shown that SSD inD. melanogasterreflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. ResultsThe IIS-regulated transcripts of4E-BPandInRmost strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression ofdILP5positively correlated with body size, while expression ofdILP2,3and8,was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet ondILPexpression in males. ConclusionAlthough females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level,dILPexpression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.more » « less
-
Abstract When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.more » « less
-
Abstract ObjectivesAvailability of fruit is an important factor influencing variation in great ape foraging strategies and activity patterns. This study aims to quantify how frugivory influences activity budgets across age‐sex classes of mountain gorillas in Bwindi Impenetrable National Park, Uganda. Materials and methodsDaily proportions of fruit‐feeding and activity budgets were calculated using 6 years of observational data on four habituated groups. We fitted generalized linear mixed models to test for age‐sex differences in the amount of fruit‐feeding, and to test whether these factors influence the proportion of time spent feeding, resting, and traveling. ResultsBwindi mountain gorillas spent on average 15% of feeding time consuming fruit, with monthly variation ranging from 0 to 70%. Greater amounts of fruit‐feeding were associated with more time feeding and traveling, and less time resting. Immatures tended to spend more feeding time on fruit than adults, but less overall time feeding and more time traveling. There were no significant differences in the amount of fruit‐feeding and overall feeding time between adult females and silverback males, despite differences in body size. DiscussionThis study confirms that gorillas are frugivorous, and only the Virunga mountain gorilla population can be characterized as highly folivorous. Along with other frugivorous great apes, Bwindi mountain gorillas alter their activity patterns in response to varying amounts of fruit in their diet. A better understanding of how variable ecological conditions can drive diversity even within a subspecies has important implications for understanding relationships between ecology, body size, and foraging strategies in great apes.more » « less
An official website of the United States government
