While male mate choice has received sparse attention in comparison to female choice, it occurs often in insects. In addition, male insects may preferentially allocate sperm and ejaculate in response to female quality. Previous research indicates that male Bicyclus anynana butterflies can learn mate preference through prior exposure to females, though naïve males mate randomly. It is unclear whether this preference learning may also influence male sperm and ejaculate allocation after mate selection, or whether males have cryptic mate preference for female wing patterns independent of preference learning. Here we test whether B. anynana males adjust their sperm and ejaculate allocation in response to a learned preference. We also assess whether males exhibit an innate cryptic preference and adjust their sperm and ejaculate in response to female wing pattern. We compared number of eggs laid by females and spermatophore (male butterfly ejaculate) weight in four no-choice treatments: naïve male butterflies (having no prior exposure to females), paired with a 2 or 0-spot female, and experienced male butterflies (having a previous three-hour interaction with a 0-spot female), paired with a 2 or 0-spot female. All females used were naturally 2-spot females, 0-spot females had artificially blocked spots. We found that 0-spot females laid significantly more eggs than 2-spot females, independent of male experience. There was no effect of female phenotype or male experience on spermatophore weight. Our findings suggest that male B. anynana have an innate cryptic preference for 0-spot females, which has been shown in other studies to only be seen as a pre-copulatory preference when enhanced by early experience.
more »
« less
Maternal Responses in the Face of Infection Risk
Abstract When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.
more »
« less
- Award ID(s):
- 1655269
- PAR ID:
- 10368062
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Parental care, mating dynamics and life history co‐evolve. Understanding the diversity of reproductive patterns found in nature is a major focus of evolutionary ecology research. Previous research suggests that the origin of parental care of eggs will be favoured when egg and adult death rates and juvenile survival are relatively high. However, the previous research that explored the link between care and life history did not account for among‐species variation in mating dynamics. As mating dynamics are generally expected to influence care, we explore, theoretically, the life‐history conditions (stage‐specific rates of maturation and survival) that favour parental care across three mating scenarios: reproductive rate (1) is unaffected by males (assuming that some males are present), (2) increases as male abundance increases or (3) decreases as male abundance increases. Across scenarios, all forms of care were most strongly favoured when egg and adult death rates, juvenile survival and female egg maturation rates were relatively high. When reproductive rate was unaffected by male abundance or increased as male abundance increased, as we might expect in systems in which females are mate‐limited, all forms of care were most strongly favoured when male egg maturation rate (i.e. the rate at which male eggs develop, mature and hatch) was moderate or high. When greater male abundance inhibited reproduction, which might occur in systems with intense male–male competition, all forms of care were most strongly favoured when male egg maturation rate was low‐to‐moderate. These results suggest that life history affects the evolution of parental care, and sex‐specific life history can interact with mating dynamics to influence the origin of care.more » « less
-
Hormones mediate physiological and behavioral changes in adults as they transition into reproduction. In this study, we characterize the circulating levels of five key hormones involved in reproduction in rock doves ( Columba livia ): corticosterone, progesterone, estradiol, testosterone, and prolactin using univariate and multivariate approaches. We show similar patterns as previous studies in the overall patterns in circulating levels of these hormones, i.e., testosterone (males) and estradiol (females) high during nest-building or egg-laying, prolactin increasing at mid-incubation and peaking at hatching (both sexes), and elevated corticosterone levels in later incubation and early nestling development. In our investigation of hormone co-variation, we find a strong correlation between prolactin and corticosterone across sampling stages and similarities in earlier (early to mid-incubation) compared to later (late incubation to nestling d9) sampling stages in males and females. Finally, we utilized experimental manipulations to simulate nest loss or altered caregiving lengths to test whether external cues, internal timing, or a combination of these factors contributed most to hormone variation. Following nest loss, we found that both males and females responded to the external cue. Males generally responded quickly following nest loss by increasing circulating testosterone, but this response was muted when nest loss occurred early in reproduction. Similar treatment type, e.g., removal of eggs, clustered similarly in hormone space. These results suggest internal drivers limited male response early in reproduction to nest loss. In contrast, circulating levels of these hormones in females either did not change or decreased following nest manipulation suggesting responsiveness to external drivers, but unlike males, this result suggests that reproductive processes were decreasing.more » « less
-
Male orangutans exhibit bimaturism—two mature morphs—flanged and unflanged males. Flanged males are larger, have cheek pads (flanges) and large throat sacs, and produce long calls. Previous orangutan paternity studies found variation between the reproductive success of each morph and in the degrees of reproductive skew. However, these studies were limited by a lack of behavioral maternity data, the inclusion of ex-captive orangutans, and/or the presence of feeding stations. Here we present the first paternity data from completely wild orangutans with known mothers. We hypothesized that (1) flanged males would have higher reproductive success than unflanged males due to flanged male dominance and female preference and (2) a single male would not monopolize paternity due to the temporal and spatial distribution of fecund females. We used fecal samples collected in Gunung Palung National Park from 2008-2019 to genotype orangutans (13 offspring born 2002-2015, their 10 mothers, and 19 candidate sires) using 12 microsatellites. MICROCHECKER 2.2.3 and CERVUS 3.0 were used to confirm the suitability of the microsatellite panel, fidelity of individual identities, and genetic maternity. Paternity analysis was performed with both CERVUS 3.0 and COLONY 2.0.6.7. We were able to identify paternity for six offspring. Four flanged males sired five offspring, and one sire’s morph was unknown at the time of conception. We found that flanged males have higher reproductive success and that females are not monopolizable in this completely wild setting. We discuss the implications of all published orangutan paternity results for understanding bimaturism in orangutans.more » « less
-
AbstractWhile there are many studies documenting female mating preferences across taxa, male mate choice remains relatively understudied. Male mate choice often develops when there is variation in female quality and thus the fitness benefits of mating with particular females. Specifically, males tend to prefer females with traits that confer direct fitness benefits such as large body size, which may be linked with high fecundity. Prior work has shown that females of the strawberry poison frog,Oophaga pumilio, prefer males bearing certain coloration (most often the female’s own color), and that this preference can be learned through maternal imprinting. Females have been shown to prefer larger males as well. Here we test whether similar mate preferences for color and size exist in males of this species using two-way choice tests on captive bred maleO. pumilio. In each test focal males were placed in an arena with two stimulus females: either both of the same size but differing in color, or both of the same color but differing in size. We found only weak evidence for behavioral biases toward particular colors and no evidence for biases toward larger females, suggesting that males ofO. pumiliodo not predictably choose mates based on these female traits. Despite several aspects of their natural history that suggest males have reasons to be choosy, our findings suggest that the cost of mate rejection may outweigh any fitness benefits derived from being selective of mates. Studies of additional populations, ideally conducted on wild individuals, are needed to better understand the range of conditions under which males may exhibit mate choice and the types of traits on which they base these choices. Significance statementTo fully understand the fitness landscapes and evolutionary trajectories that result from sexual selection, we need to understand when and how the mate preferences of the two sexes act and interact. While female mate choice has been widely studied, male mate choice remains poorly understood. To help bridge this gap, we studied male mate preferences in the strawberry poison frogOophaga pumilio, a small brightly colored frog for which female preferences for male color and size have been well-documented. We found no evidence that maleO. pumilioexhibit mate preferences based on female size and little evidence for male mate preferences based on female color. This is surprising given that larger females are often more fecund, maleO. pumilioare known to exhibit color-based behavioral biases in the context of male-male competition, and both sexes provide parental care.more » « less
An official website of the United States government
