skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pretraining and the lasso
Abstract Pre-training is a powerful paradigm in machine learning to pass information across models. For example, suppose one has a modest-sized dataset of images of cats and dogs and plans to fit a deep neural network to classify them. With pre-training, we start with a neural network trained on a large corpus of images of not just cats and dogs but hundreds of classes. We fix all network weights except the top layer(s) and fine tune on our dataset. This often results in dramatically better performance than training solely on our dataset. Here, we ask: ‘Can pre-training help the lasso?’. We propose a framework where the lasso is fit on a large dataset and then fine-tuned on a smaller dataset. The latter can be a subset of the original, or have a different but related outcome. This framework has a wide variety of applications, including stratified and multi-response models. In the stratified model setting, lasso pre-training first estimates coefficients common to all groups, then estimates group-specific coefficients during fine-tuning. Under appropriate assumptions, support recovery of the common coefficients is superior to the usual lasso trained on individual groups. This separate identification of common and individual coefficients also aids scientific understanding.  more » « less
Award ID(s):
2113389
PAR ID:
10627618
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
ISSN:
1369-7412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The deep neural networks used in modern computer vision systems require enormous image datasets to train them. These carefully-curated datasets typically have a million or more images, across a thousand or more distinct categories. The process of creating and curating such a dataset is a monumental undertaking, demanding extensive effort and labelling expense and necessitating careful navigation of technical and social issues such as label accuracy, copyright ownership, and content bias.What if we had a way to harness the power of large image datasets but with few or none of the major issues and concerns currently faced? This paper extends the recent work of Kataoka et al. [15], proposing an improved pre-training dataset based on dynamically-generated fractal images. Challenging issues with large-scale image datasets become points of elegance for fractal pre-training: perfect label accuracy at zero cost; no need to store/transmit large image archives; no privacy/demographic bias/concerns of inappropriate content, as no humans are pictured; limitless supply and diversity of images; and the images are free/open-source. Perhaps surprisingly, avoiding these difficulties imposes only a small penalty in performance. Leveraging a newly-proposed pre-training task—multi-instance prediction—our experiments demonstrate that fine-tuning a network pre-trained using fractals attains 92.7-98.1% of the accuracy of an ImageNet pre-trained network. Our code is publicly available. 1 
    more » « less
  2. Despite recent progress in computer vision, fine-grained interpretation of satellite images remains challenging because of a lack of labeled training data. To overcome this limitation, we construct a novel dataset called WikiSatNet by pairing geo-referenced Wikipedia articles with satellite imagery of their corresponding locations. We then propose two strategies to learn representations of satellite images by predicting properties of the corresponding articles from the images. Leveraging this new multi-modal dataset, we can drastically reduce the quantity of human-annotated labels and time required for downstream tasks. On the recently released fMoW dataset, our pre-training strategies can boost the performance of a model pre-trained on ImageNet by up to 4.5% in F1 score. 
    more » « less
  3. Abstract Insect pests cause significant damage to food production, so early detection and efficient mitigation strategies are crucial. There is a continual shift toward machine learning (ML)‐based approaches for automating agricultural pest detection. Although supervised learning has achieved remarkable progress in this regard, it is impeded by the need for significant expert involvement in labeling the data used for model training. This makes real‐world applications tedious and oftentimes infeasible. Recently, self‐supervised learning (SSL) approaches have provided a viable alternative to training ML models with minimal annotations. Here, we present an SSL approach to classify 22 insect pests. The framework was assessed on raw and segmented field‐captured images using three different SSL methods, Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Barlow Twins. SSL pre‐training was done on ResNet‐18 and ResNet‐50 models using all three SSL methods on the original RGB images and foreground segmented images. The performance of SSL pre‐training methods was evaluated using linear probing of SSL representations and end‐to‐end fine‐tuning approaches. The SSL‐pre‐trained convolutional neural network models were able to perform annotation‐efficient classification. NNCLR was the best performing SSL method for both linear and full model fine‐tuning. With just 5% annotated images, transfer learning with ImageNet initialization obtained 74% accuracy, whereas NNCLR achieved an improved classification accuracy of 79% for end‐to‐end fine‐tuning. Models created using SSL pre‐training consistently performed better, especially under very low annotation, and were robust to object class imbalances. These approaches help overcome annotation bottlenecks and are resource efficient. 
    more » « less
  4. Deep learning algorithms have been moderately successful in diagnoses of diseases by analyzing medical images especially through neuroimaging that is rich in annotated data. Transfer learning methods have demonstrated strong performance in tackling annotated data. It utilizes and transfers knowledge learned from a source domain to target domain even when the dataset is small. There are multiple approaches to transfer learning that result in a range of performance estimates in diagnosis, detection, and classification of clinical problems. Therefore, in this paper, we reviewed transfer learning approaches, their design attributes, and their applications to neuroimaging problems. We reviewed two main literature databases and included the most relevant studies using predefined inclusion criteria. Among 50 reviewed studies, more than half of them are on transfer learning for Alzheimer's disease. Brain mapping and brain tumor detection were second and third most discussed research problems, respectively. The most common source dataset for transfer learning was ImageNet, which is not a neuroimaging dataset. This suggests that the majority of studies preferred pre-trained models instead of training their own model on a neuroimaging dataset. Although, about one third of studies designed their own architecture, most studies used existing Convolutional Neural Network architectures. Magnetic Resonance Imaging was the most common imaging modality. In almost all studies, transfer learning contributed to better performance in diagnosis, classification, segmentation of different neuroimaging diseases and problems, than methods without transfer learning. Among different transfer learning approaches, fine-tuning all convolutional and fully-connected layers approach and freezing convolutional layers and fine-tuning fully-connected layers approach demonstrated superior performance in terms of accuracy. These recent transfer learning approaches not only show great performance but also require less computational resources and time. 
    more » « less
  5. Comparing with natural imaging datasets used in transfer learning, the effects of med- ical pre-training datasets are underexplored. In this study, we carry out transfer learning pre-training dataset effect analysis in breast cancer imaging by evaluating three popular deep neural networks and one patch-based convolutional neural network on three target datasets under different fine-tuning configurations. Through a series of comparisons, we conclude that the pre-training dataset, DDSM, is effective on two other mammogram datasets. However, it is ineffective on an ultrasound dataset. What is more, fine-tuning may mask the inefficacy of a pre-training dataset. In addition, the efficacy/inefficacy of DDSM on the target datasets is corroborated by a representational analysis. At last, we show that hybrid transfer learning cannot mitigate the masking effect of fine-tuning. 
    more » « less