skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: To See IMFs on a Surface of Glass: A General Chemistry Lab Exploring Intermolecular Forces on Surface Structures through Causal Mechanistic Reasoning
Intermolecular forces (IMFs) make up a fundamental concept of chemistry and one that is integral to students’ understanding of the properties and interactions of matter. Despite this, students struggle to apply IMFs to real phenomena in their world. Here we describe a first-semester general chemistry laboratory in which students functionalize the surface of glass slides and observe the interaction of water and heptane drops with the surface, allowing them to integrate IMF, molecular modeling, and causal mechanistic reasoning to explain observable and measurable phenomena. In the activity, students perform and describe a series of simple reactions that covalently bond the silane molecules acetoxypropyltrimethoxysilane and octyltrimethoxysilane to the glass surface. They then characterize the slides by adding drops of water to the modified slide, taking profile pictures with their cell phones, and determining the drop half angles from the pictures using ImageJ software. Students also added drops of heptane to the slides and observed their interactions with the slides, contrasting those with the interactions of the water drops. This lab activity invites students to consider the material of the lab on the macroscopic and submicroscopic levels as they describe the functionalization of glass slides, observe the interaction of the modified and unmodified slides with drops of water and heptane, and then construct explanations that reinforce their learning of IMFs and molecular structures. The experimental procedure and data collection proved to be robust, with most students producing data that were consistent with expectations and supported their claims about the IMFs between water molecules and between the water molecules and the surface.  more » « less
Award ID(s):
2111446
PAR ID:
10627689
Author(s) / Creator(s):
; ;
Editor(s):
Holme, Thomas A
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Education
Volume:
102
Issue:
1
ISSN:
0021-9584
Page Range / eLocation ID:
379 to 389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Following the emergence of the SARS-CoV-2 (Covid-19) pandemic, interest in understanding antibody diagnostic testing has increased. We describe a quick and inexpensive technique that enabled students to print their own microfluidic devices that can be used to house an immunoassay for detecting a Human Immunodeficiency Virus (HIV) antibody. Both qualitative diagnostic assays and quantitative binding assays were carried out to characterize the HIV interaction with a target antibody. By performing these hands-on low-cost experiments in the analytical chemistry lab course, students were exposed to 3D fabrication, microfluidic technology, surface chemistry, protein-ligand binding affinity studies, and immunoassays within the time frame of two four–hour laboratory periods. 
    more » « less
  2. Terminal silanol groups on the glass surface were used for the chemical bonding of α-bromo amide as the initiator for surface initiated Cu(0)-mediated living radical polymerization (LRP) to graft well-defined poly(butyl arylate) (PBA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEM) brushes on the glass surface. A grafting to methodology was also performed by the modification of the glass surface using a thiosilane agent and performing a thio-bromo click reaction in the presence of PBA and PTFEM synthesized via Cu(0)-mediated LRP. Furthermore, a one-pot grafting to method was developed that proved a facile, fast, and efficient method for grafting a bromo-terminated polymer to the glass surface in one step. All glass slides were characterized using ATR-FTIR and UV-vis spectroscopy, water contact angle measurements and SEM. The surface topology and roughness of selected samples were analyzed using AFM. Results show that an ultrathin layer of a polymer with nanoscale features and high roughness was chemically grafted to the glass surface without compromising glass transparency. These methodologies can be used to graft well-defined polymers with different functionalities on the glass surface. 
    more » « less
  3. Air bubbles at the surface of water end their life in a particular way: when bursting, they may eject drops of liquid in the surrounding environment. Many uncertainties remain regarding collective effects of bubbles at the water–air interface, despite extensive efforts to describe the bursting mechanisms, motivated by their critical importance in mass transfers between the ocean and the atmosphere in the production of sea spray aerosols. We investigate the effect of surfactant on the collective dynamics and statistics of air bubbles evolving freely at the surface of water, through an experimental set-up controlling the bulk distribution of bubbles with nearly monodisperse millimetric air bubbles. We observe that for low contamination, bubble coalescence is inevitable and leads to a broad surface size distribution. For higher surfactant concentrations, coalescence at the surface is prevented and bubble lifetime is increased, leading to the formation of rafts with a surface size distribution identical to the bulk distribution. This shows that surface contamination has a first-order influence on the transfer function from bulk size distribution to surface size distribution, an intermediate step which needs to be considered when developing sea spray source function as droplet production by bubble bursting depends on the bubble size. We measure the bursting and merging rates of bubbles as a function of contamination through a complementary freely decaying raft experiment. We propose a cellular automaton model that includes the minimal ingredients to reproduce the experimental results in the statistically stationary configuration: production, coalescence and bursting after a finite lifetime. 
    more » « less
  4. Abstract Silica glass samples were given various heat treatments under stress at low temperatures and subsequently their residual stress distributions in terms of retardance were observed using a polarized light microscope, confirming previously reported fast surface stress relaxation while providing more detailed characterization. Retardance profiles of silica glass fibers heat‐treated under a constant bending strain in the presence of atmospheric water vapor were measured and fit to a previously developed diffusion‐based relaxation model. The retardance of a cross‐section of a silica glass rod heat‐treated at 650°C in lab air under applied torsional shear strain was also measured to confirm the presence of residual surface shear stress which was predicted by the decrease of torque with time for the rod. Together, these results confirm the low‐temperature fast surface stress relaxation which occurs when water vapor is present for both bending and shear stresses. 
    more » « less
  5. Scully, John R (Ed.)
    Volatile corrosion inhibitors (VCIs), specifically formulations based on thiols and amines, can be used to mitigate top-of-the-line corrosion (TLC) that arises during the transportation of wet gas through transmission pipelines. Nevertheless, the VCI inhibition efficiency (IE) can be compromised by the presence of condensable hydrocarbon phases. In this research, the IE of two thiol compounds (decanethiol and hexanethiol) and three combinations of VCIs for TLC scenarios, both in the presence and absence of n-heptane, representing a condensing hydrocarbon phase were studied. The results proved the IE of thiols in a water-only condensing environment, with effectiveness increasing with the alkyl tail length. Conversely, in a water/n-heptane co-condensing environment, a reversed trend was observed, where hexanethiol exhibited higher corrosion IE compared to decanethiol. Molecular simulation results indicated a synergistic adsorption behavior when the alkane was of a similar length as the alkyl tails of the inhibitors, leading to the incorporation of alkane molecules with the inhibitor molecules. A mixture of thiols (decanethiol and hexanethiol) and two mixtures of thiol and amines (decanethiol and diethylamine/t-butylamine) were also considered in both water-only and water/n-heptane co-condensing environments. In the presence of n-heptane, only the thiol mixture, featuring molecules with different tail lengths, demonstrated high IE. This behavior was attributed to the superior IE provided by thiol-based molecules with a shorter alkyl tail (hexanethiol) in the presence of n-heptane. Additionally, the results revealed that the mixtures of decanethiol and amines did not enhance corrosion inhibition in the presence of n-heptane within the system. 
    more » « less