We present a mathematical analysis of a non-convex energy landscape for robust subspace recovery. We prove that an underlying subspace is the only stationary point and local minimizer in a specified neighborhood under a deterministic condition on a dataset. If the deterministic condition is satisfied, we further show that a geodesic gradient descent method over the Grassmannian manifold can exactly recover the underlying subspace when the method is properly initialized. Proper initialization by principal component analysis is guaranteed with a simple deterministic condition. Under slightly stronger assumptions, the gradient descent method with a piecewise constant step-size scheme achieves linear convergence. The practicality of the deterministic condition is demonstrated on some statistical models of data, and the method achieves almost state-of-the-art recovery guarantees on the Haystack Model for different regimes of sample size and ambient dimension. In particular, when the ambient dimension is fixed and the sample size is large enough, we show that our gradient method can exactly recover the underlying subspace for any fixed fraction of outliers (less than 1). 
                        more » 
                        « less   
                    This content will become publicly available on December 15, 2025
                            
                            Mean-field analysis for learning subspace-sparse polynomials with Gaussian input
                        
                    
    
            In this work, we study the mean-field flow for learning subspace-sparse polynomials using stochastic gradient descent and two-layer neural networks, where the input distribution is standard Gaussian and the output only depends on the projection of the input onto a low-dimensional subspace. We establish a necessary condition for SGD-learnability, involving both the characteristics of the target function and the expressiveness of the activation function. In addition, we prove that the condition is almost sufficient, in the sense that a condition slightly stronger than the necessary condition can guarantee the exponential decay of the loss functional to zero. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2031849
- PAR ID:
- 10627703
- Publisher / Repository:
- NeurIPS 2024
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            King, R.; Peitsch, D. (Ed.)The Loewner framework is extended to compute reduced order models (ROMs) for systems governed by the incompressible Navier-Stokes (NS) equations. For quadratic ordinary differential equations (ODEs) it constructs a ROM directly from measurements of transfer function components derived from an expansion of the system’s input-to-output map. Given measurements, no explicit access to the system is required to construct the ROM. To extend the Loewner framework, the NS equations are transformed into ODEs by projecting onto the subspace defined by the incompressibility condition. This projection is used theoretically, but avoided computationally. This paper presents the overall approach. Currently, transfer function measurements are obtained via computational simulations; obtaining them from experiments is an open issue. Numerical results show the potential of the Loewner framework, but also reveal possible lack of stability of the ROM. A possible approach, which currently requires access to the NS system, to deal with these instabilities is outlined.more » « less
- 
            Ta-Shma, Amnon (Ed.)A central open problem in complexity theory concerns the question of whether all efficient randomized algorithms can be simulated by efficient deterministic algorithms. The celebrated "hardness v.s. randomness” paradigm pioneered by Blum-Micali (SIAM JoC’84), Yao (FOCS’84) and Nisan-Wigderson (JCSS’94) presents hardness assumptions under which e.g., prBPP = prP (so-called "high-end derandomization), or prBPP ⊆ prSUBEXP (so-called "low-end derandomization), and more generally, under which prBPP ⊆ prDTIME(𝒞) where 𝒞 is a "nice" class (closed under composition with a polynomial), but these hardness assumptions are not known to also be necessary for such derandomization. In this work, following the recent work by Chen and Tell (FOCS’21) that considers "almost-all-input" hardness of a function f (i.e., hardness of computing f on more than a finite number of inputs), we consider "almost-all-input" leakage-resilient hardness of a function f - that is, hardness of computing f(x) even given, say, √|x| bits of leakage of f(x). We show that leakage-resilient hardness characterizes derandomization of prBPP (i.e., gives a both necessary and sufficient condition for derandomization), both in the high-end and in the low-end setting. In more detail, we show that there exists a constant c such that for every function T, the following are equivalent: - prBPP ⊆ prDTIME(poly(T(poly(n)))); - Existence of a poly(T(poly(n)))-time computable function f :{0,1}ⁿ → {0,1}ⁿ that is almost-all-input leakage-resilient hard with respect to n^c-time probabilistic algorithms. As far as we know, this is the first assumption that characterizes derandomization in both the low-end and the high-end regime. Additionally, our characterization naturally extends also to derandomization of prMA, and also to average-case derandomization, by appropriately weakening the requirements on the function f. In particular, for the case of average-case (a.k.a. "effective") derandomization, we no longer require the function to be almost-all-input hard, but simply satisfy the more standard notion of average-case leakage-resilient hardness (w.r.t., every samplable distribution), whereas for derandomization of prMA, we instead consider leakage-resilience for relations.more » « less
- 
            Approximating the action of a matrix function $$f(\vec{A})$$ on a vector $$\vec{b}$$ is an increasingly important primitive in machine learning, data science, and statistics, with applications such as sampling high dimensional Gaussians, Gaussian process regression and Bayesian inference, principle component analysis, and approximating Hessian spectral densities. Over the past decade, a number of algorithms enjoying strong theoretical guarantees have been proposed for this task. Many of the most successful belong to a family of algorithms called \emph{Krylov subspace methods}. Remarkably, a classic Krylov subspace method, called the Lanczos method for matrix functions (Lanczos-FA), frequently outperforms newer methods in practice. Our main result is a theoretical justification for this finding: we show that, for a natural class of \emph{rational functions}, Lanczos-FA matches the error of the best possible Krylov subspace method up to a multiplicative approximation factor. The approximation factor depends on the degree of $f(x)$'s denominator and the condition number of $$\vec{A}$$, but not on the number of iterations $$k$$. Our result provides a strong justification for the excellent performance of Lanczos-FA, especially on functions that are well approximated by rationals, such as the matrix square root.more » « less
- 
            A general problem encompassing output regulation and pattern generation can be formulated as the design of controllers to achieve convergence to a persistent trajectory within the zero dynamics on which an output vanishes. We develop an optimal control theory for such design by adding the requirement to minimize the H2 norm of a closed-loop transfer function. Within the framework of eigenstructure assignment, the optimal control is proven identical to the standard H2 control in form. However, the solution to the Riccati equation for the linear quadratic regulator is not stabilizing. Instead it partially stabilizes the closed-loop dynamics excluding the zero dynamics. The optimal control architecture is shown to have the feedback of the deviation from the subspace of the zero dynamics and the feedforward of the control input to remain in the subspace.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
