Wave overtopping of shoreline infrastructure can lead to significant flooding and consequent loss of life, impairment of transportation systems, and ecological damage. Coastal defenses against overtopping traditionally include hard structures, such as seawalls and revetments, and design guidelines for these structures, e.g., the EurOtop manual (Van der Meer et al., 2018), have been developed from empirical studies of overtopping. Recently, natural and nature-based features (NNBF) including mangroves, wetlands, reefs, and other systems have gained attention as alternatives to conventional engineered coastal protection systems. Field observations have identified the potential of emergent vegetation, particularly mangrove forests, to mitigate damage during extreme coastal flood events (Alongi, 2008; Tomiczek et al., 2020). However, there is a lack of research on engineering NNBF systems to achieve specific design requirements for overtopping protection. Hybrid or multi-tiered approaches to shoreline protection have also been proposed, where natural (“green”) features are combined with hardened (“gray”) infrastructure to protect coastlines and near-coast assets from erosion and/or flood-based hazards. For overtopping mitigation, hybrid designs can add the performance provided by emergent vegetation to the services of a revetment or a wall. It is unknown whether the green and gray features in a hybrid system perform independently and can be considered as separate design elements, or if the inclusion of one feature affects the performance of the other such that the hybrid system must be considered as a single, complex design element. This study constructed a large-scale physical model to investigate the overtopping performance of a hybrid system with an idealized Rhizophora mangrove forest seaward of a revetment abutting a vertical wall compared to that performance of the wall fronted by the revetment only, the wall fronted by vegetation only, and the wall alone. 
                        more » 
                        « less   
                    This content will become publicly available on August 4, 2026
                            
                            Performance Evaluation of Natural and Nature-Based Features for Coastal Protection and Co-Benefits
                        
                    
    
            Built infrastructure, such as seawalls and levees, has long been used to reduce shoreline erosion and protect coastal properties from flood impacts. In contrast, natural and nature-based features (NNBF), including marshes, mangroves, oyster reefs, coral reefs, and seagrasses, offer not only coastal protection but also a range of valuable ecosystem services. There is no clear understanding of the capacity of either natural habitats or NNBF integrated with traditional engineered infrastructure to withstand extreme events, nor are there well-defined breakpoints at which these habitats fail to provide coastal protection. Evaluating existing NNBF strategies using a standardized set of metrics can help to assess their effectiveness to better inform design criteria. This review identifies a selection of NNBF projects with long-term monitoring programs and synthesizes the monitoring data to provide a literature-based performance assessment. It also explores the integration of NNBF with existing gray infrastructure to enhance overall effectiveness. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2224608
- PAR ID:
- 10627741
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Marine Science
- ISSN:
- 1941-1405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundCombined impacts from anthropogenic pressures and climate change threaten coastal ecosystems and their capacity to protect communities from hazards. One approach towards improving coastal protection is to implement “nature-based solutions” (NBS), which are actions working with nature to benefit nature and humans. Despite recent increases in global implementation of NBS projects for coastal protection, substantial gaps exist in our understanding of NBS performance. To help fill this gap, we systematically mapped the global evidence base on the ecological, physical, economic, and social performance of NBS interventions related to coastal protection. We focused on active NBS interventions, such as restoring or creating habitat, adding structure, or modifying sediment in six shallow biogenic ecosystems: salt marsh, seagrass, kelp forest, mangrove, coral reef, and shellfish reef. MethodsWe identified potentially relevant articles on the performance of NBS for coastal protection using predefined and tested search strategies across two indexing platforms, one bibliographic database, two open discovery citation indexes, one web-based search engine, and a novel literature discovery tool. We also searched 45 organizational websites for literature and solicited literature from 66 subject matter experts. Potentially relevant articles were deduplicated and then screened by title and abstract with assistance from a machine learning algorithm. Following title and abstract screening, we conducted full text screening, extracted relevant metadata into a predefined codebook, and analyzed the evidence base to determine the distribution and abundance of evidence and answer our research questions on NBS performance. ResultsOur search captured > 37,000 articles, of which 252 met our eligibility criteria for relevance to NBS performance for coastal protection and were included in the systematic map. Evidence stemmed from 31 countries and increased from the 1980s through the 2020s. Active NBS interventions for coastal protection were most often implemented in salt marshes (45%), mangrove forests (26%), and shellfish reefs (20%), whereas there were fewer NBS studies in seagrass meadows (4%), coral reefs (4%), or kelp beds (< 1%). Performance evaluations of NBS were typically conducted using observational or experimental methods at local spatial scales and over short temporal scales (< 1 year to 5 years). Evidence clusters existed for several types of NBS interventions, including restoration and addition of structures (e.g., those consisting of artificial, hybrid, or natural materials), yet evidence gaps existed for NBS interventions like alteration of invasive species. Evaluations of NBS performance commonly focused on ecological (e.g., species and population, habitat, community) and physical (e.g., waves, sediment and morphology) outcomes, whereas pronounced evidence gaps existed for economic (e.g., living standards, capital) and social (e.g., basic infrastructure, health) outcomes. ConclusionsThis systematic map highlights evidence clusters and evidence gaps related to the performance of active NBS interventions for coastal protection in shallow, biogenic ecosystems. The synthesized evidence base will help guide future research and management of NBS for coastal protection so that active interventions can be designed, sited, constructed, monitored, and adaptively managed to maximize co-benefits. Promising avenues for future research and management initiatives include implementing broad-scale spatial and temporal monitoring of NBS in multidisciplinary teams to examine not only ecological and physical outcomes but also economic and social outcomes, as well as conducting further synthesis on evidence clusters that may reveal measures of effect for specific NBS interventions. Since NBS can deliver multiple benefits, measuring a diverse suite of response variables, especially those related to ecosystem function, as well as social and economic responses, may help justify and improve societal benefits of NBS. Such an approach can help ensure that NBS can be strategically harnessed and managed to meet coastal protection goals and provide co-benefits for nature and people.more » « less
- 
            Abstract BackgroundAnthropogenic pressures and climate change threaten the capacity of ecosystems to deliver a variety of services, including protecting coastal communities from hazards like flooding and erosion. Human interventions aim to buffer against or overcome these threats by providing physical protection for existing coastal infrastructure and communities, along with added ecological, social, or economic co-benefits. These interventions are a type of nature-based solution (NBS), broadly defined as actions working with nature to address societal challenges while also providing benefits for human well-being, biodiversity, and resilience. Despite the increasing popularity of NBS for coastal protection, sometimes in lieu of traditional hardened shorelines (e.g., oyster reefs instead of bulkheads), gaps remain in our understanding of whether common NBS interventions for coastal protection perform as intended. To help fill these knowledge gaps, we aim to identify, collate, and map the evidence base surrounding the performance of active NBS interventions related to coastal protection across a suite of ecological, physical, social, and economic outcomes in salt marsh, seagrass, kelp, mangrove, shellfish reef, and coral reef systems. The resulting evidence base will highlight the current knowledge on NBS performance and inform future uses of NBS meant for coastal protection. MethodsSearches for primary literature on performance of NBS for coastal protection in shallow, biogenic ecosystems will be conducted using a predefined list of indexing platforms, bibliographic databases, open discovery citation indexes, and organizational databases and websites, as well as an online search engine and novel literature discovery tool. All searches will be conducted in English and will be restricted to literature published from 1980 to present. Resulting literature will be screened against set inclusion criteria (i.e., population, intervention, outcome, study type) at the level of title and abstract followed by full text. Screening will be facilitated by a web-based active learning tool that incorporates user feedback via machine learning to prioritize articles for review. Metadata will be extracted from articles that meet inclusion criteria and summarized in a narrative report detailing the distribution and abundance of evidence surrounding NBS performance, including evidence clusters, evidence gaps, and the precision and sensitivity of the search strategy.more » « less
- 
            Abstract Coral reefs offer natural coastal protection by attenuating incoming waves. Here we combine unique coral disturbance-recovery observations with hydrodynamic models to quantify how structural complexity dissipates incoming wave energy. We find that if the structural complexity of healthy coral reefs conditions is halved, extreme wave run-up heights that occur once in a 100-years will become 50 times more frequent, threatening reef-backed coastal communities with increased waves, erosion, and flooding.more » « less
- 
            Context Reversing global declines of foundation species requires recovery of critical bottlenecks in population dynamics, particularly the recruitment of early life stages. Understanding the controls on recruitment can substantially improve restoration success. Objectives We investigated how geophysical conditions and restoration history determine recruitment in eastern oysters (Crassostrea virginica), a foundation species requiring substantial restoration efforts following severe, widespread losses. Methods Over 3 years, we measured annual oyster recruitment to standardized ceramic tiles on 9–16 intertidal reefs in coastal Virginia, USA. We paired these measurements with an 18-year time series of recruitment to natural substrate on 8 natural reference reefs and 44 restored reefs (0–16 years post-construction). Results Recruitment to tiles was highly correlated with recruitment to natural substrate, validating our methodology. Recruitment was positively spatially autocorrelated within 1 km and increased 9–14 × with moderate wind fetch. A one-meter increase in substrate elevation tripled recruitment. Recruitment was 4 × higher on natural reefs compared to restored reefs, regardless of elapsed time since restoration. Geospatial model predictions identified 6% (24 km2) of intertidal areas as highly suitable for oyster recruitment, offering a refined target for restoration practitioners. Conclusions By integrating multi-year field studies, long-term monitoring, and habitat suitability modeling, our research identified environmental conditions favorable for oyster recruitment, offering insights that could enhance restoration planning and population resilience. Our findings provide actionable insights for optimizing oyster restoration by targeting areas with favorable wind fetch and elevation. These results offer valuable guidance for spatial planning in restoration and may inform strategies for other species where recruitment limits restoration success.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
