- Award ID(s):
- 1851993
- PAR ID:
- 10533627
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Science of Remote Sensing
- Volume:
- 6
- Issue:
- C
- ISSN:
- 2666-0172
- Page Range / eLocation ID:
- 100067
- Subject(s) / Keyword(s):
- Terrain elevation Accuracy assessment GEDI ICESat-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The ATLAS sensor onboard the ICESat-2 satellite is a photon-counting lidar (PCL) with a primary mission to map Earth's ice sheets. A secondary goal of the mission is to provide vegetation and terrain elevations, which are essential for calculating the planet's biomass carbon reserves. A drawback of ATLAS is that the sensor does not provide reliable terrain height estimates in dense, high-closure forests because only a few photons reach the ground through the canopy and return to the detector. This low penetration translates into lower accuracy for the resultant terrain model. Tropical forest measurements with ATLAS have an additional problem estimating top of canopy because of frequent atmospheric phenomena such as fog and low clouds that can be misinterpreted as top of the canopy. To alleviate these issues, we propose using a ConvPoint neural network for 3D point clouds and high-density airborne lidar as training data to classify vegetation and terrain returns from ATLAS. The semantic segmentation network provides excellent results and could be used in parallel with the current ATL08 noise filtering algorithms, especially in areas with dense vegetation. We use high-density airborne lidar data acquired along ICESat-2 transects in Central American forests as a ground reference for training the neural network to distinguish between noise photons and photons lying between the terrain and the top of the canopy. Each photon event receives a label (noise or signal) in the test phase, providing automated noise-filtering of the ATL03 data. The terrain and top of canopy elevations are subsequently aggregated in 100 m segments using a series of iterative smoothing filters. We demonstrate improved estimates for both terrain and top of canopy elevations compared to the ATL08 100 m segment estimates. The neural network (NN) noise filtering reliably eliminated outlier top of canopy estimates caused by low clouds, and aggregated root mean square error (RMSE) decreased from 7.7 m for ATL08 to 3.7 m for NN prediction (18 test profiles aggregated). For terrain elevations, RMSE decreased from 5.2 m for ATL08 to 3.3 m for the NN prediction, compared to airborne lidar reference profiles.ICESat-2LidarPoint cloudNoise filteringmore » « less
-
Remote sensing can provide continuous spatiotemporal information about vegetation to inform wildlife habitat estimates, but these methods are often limited in availability or lack adequate resolution to capture the three‐dimensional vegetative details critical for understanding habitat. The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne light detection and ranging system (LiDAR) that has revolutionized the availability of high‐quality three‐dimensional vegetation measurements of the Earth's temperate and tropical forests. To date, wildlife‐related applications of GEDI data or GEDI‐fusion products have been limited to estimate species habitat use, distribution, and diversity. Here, our goal was to expand the use of GEDI‐based applications to wildlife demography by evaluating if GEDI data fusions could aid in characterizing demographic parameters of wildlife. We leveraged a recently published dataset of GEDI‐fusion forest structures and capture–mark–recapture data to estimate the density and survival of two small mammal species, Humboldt's flying squirrel (more » « less
Glaucomys oregonensis ) and Townsend's chipmunk (Neotamias townsendii ), from three studies in western Oregon spanning 2014–2021. We used capture histories in Huggins robust design models to estimate apparent annual survival and density as a derived parameter. We found strong support that both flying squirrel and chipmunk density were associated with GEDI‐fusion forest structures of foliage height diversity and plant area volume density in the 5–10 m strata for flying squirrels and proportionately higher plant area volume density in the 0–20 m strata for chipmunks, as well as other spatiotemporal factors such as elevation. We found weak support that apparent annual survival was associated with GEDI‐fusion forest structures for flying squirrels but not for chipmunks. We demonstrate further utility of these methods by creating spatially explicit density maps of both species that could aid management and conservation policies. Our work represents a novel application of GEDI data to evaluate wildlife demography and produce continuous spatially explicit density predictions for these species. We conclude that aspects of small mammal demography can be explained by forest structure as characterized via GEDI data fusions. -
The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.more » « less
-
Abstract Boreal forest heights are associated with global carbon stocks and energy budgets. The launch of the Advanced Topographic Laser Altimeter System (ATLAS) onboard the NASA's Ice, Cloud and Land Elevation Satellite (ICESat‐2) enables canopy vertical structure measurement at a global scale. However, with a photon‐counting laser system, ICESat‐2 contains high uncertainties in the estimated canopy heights, requiring appropriate quality control before being applied to canopy height modelling.
We adopted a multivariate quality control approach (i.e. the Cook's distance) to improve the quality of ICESat‐2 samples. The controlled ICESat‐2 data were then input as the response variable for predicting boreal forest heights based on spatially continuous satellite data and machine learning (ML) regression models. The examined ML regressors include artificial neural networks (ANN), gradient boosting machine (GBM), random forest (RF) and support vector regression (SVR).
The proposed quality control effectively removes low‐quality ICESat‐2 samples and enhances the correlations between ICESat‐2 and airborne laser scanning (ALS) observations. Moreover, the controlled ICESat‐2 samples help achieve a trade‐off between sample quality and quantity for all ML regressors, generating close canopy heights to ALS‐derived counterparts. Overall, RF and GBM make better canopy height predictions than ANN and SVR. Of all explanatory variables, the normalized difference vegetation index calculated based on the first red edge band of Sentinel‐2 (NDVIredEdge1) is considered the most important.
The proposed quality control on ICESat‐2 sample selection and canopy height model (CHM) development workflow will greatly benefit forest structure investigations in the Arctic community.
-
Abstract A notable characteristic of terrain in non‐urbanized deglaciated areas of northeastern North America is the microtopography created by processes related to surficial geology, deglaciation and mechanical disturbances to surface materials from excavating events, most of which are caused by tree throw in the modern landscape. The features are often on the scale of 1–4 m across and decimetres to a metre in depth, appearing as ‘puddles’ during intense or high‐magnitude precipitation events. Generalized storage capacity values have been summarized in textbooks for varied landscape conditions, but surprisingly little information is available about how microtopography and related surface water storage varies in dominant physiographic settings in deglaciated landscapes defined by slope, surficial geology and land cover conditions. The increasing availability of elevation data at a horizontal resolution of 2 m or higher has made it possible to remotely evaluate differences in terrain elevation and quantify upland surface water storage capacity from relatively small topographic depressions. Here, we describe and quantify these topographic features in several coastal and inland watersheds in the state of Maine (USA) with measurements of depression volume calculated from digital elevation models (DEMs) using a pit filling approach. Results show that microtopographic storage capacity varies with slope and land cover conditions in deglaciated terrain of northeastern North America. Basin‐average surface water depression storage capacity estimates range from ~4 mm to as low as 0.2 mm. Human interventions such as clearing land for agriculture are associated with lower microtopographic surface water storage capacity than forested landscapes in the region.