Efforts to develop polymer precursor electrolytes that offer properties anticipated to be similar or superior to (lithium phosphorus oxynitride, LiPON) glasses are reported. Such precursors offer the potential to be used to process LiPON-like thin glass/ceramic coatings for use in all solid state batteries, ASBs. Here, LiPON glasses provide a design basis for the synthesis of sets of oligomers/polymers by lithiation of OP(NH2)3−x(NH)x [from OP(NH)3],OP-(NH2)3‑x(NHSiMe3)x and [PN]3(NHSiMe3)6−x(NH)x. The resulting systems have degrees of polymerization of 5−20. Treatment with selected amounts of LiNH2 provides varying degrees of lithiation and Li+ conducting properties commensurate with Li+ content. Polymer electrolytes impregnated in/on Celgard exhibit Li+ conductivities up to ∼1 × 10−5S cm−1 at room temperature and are thermally stable to ∼150 °C. A Li−S battery assembled using a Li6SiPON composition polymer electrolyte exhibits an initial reversible capacity of 1500 mAhgsulfur −1 and excellent cycle performance at 0.25 and 0.5 C rate over 120 cycles at room temperature.
more »
« less
This content will become publicly available on September 1, 2026
Regulated Li₂S deposition and accelerated polysulfide conversion in Li-S batteries enabled by electrospun CoTe₂/carbon nanofiber-modified separators
- Award ID(s):
- 2119688
- PAR ID:
- 10627935
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Chemical Engineering Journal
- Volume:
- 519
- Issue:
- C
- ISSN:
- 1385-8947
- Page Range / eLocation ID:
- 164930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Efforts to develop polymer precursor electrolytes that offer properties anticipated to be similar or superior to (lithium phosphorus oxynitride, LiPON) glasses are reported. Such precursors offer the potential to be used to process LiPON-like thin glass/ceramic coatings for use in all solid state batteries, ASBs. Here, LiPON glasses provide a design basis for the synthesis of sets of oligomers/polymers by lithiation of OP(NH2)3−x(NH)x [from OP(NH)3],OP- (NH2)3‑x(NHSiMe3)x and [PN]3(NHSiMe3)6−x(NH)x. The resulting systems have degrees of polymerization of 5−20. Treatment with selected amounts of LiNH2 provides varying degrees of lithiation and Li+ conducting properties commensurate with Li+ content. Polymer electrolytes impregnated in/on Celgard exhibit Li+ conductivities up to ∼1 × 10−5S cm−1 at room temperature and are thermally stable to ∼150 °C. A Li−S battery assembled using a Li6SiPON composition polymer electrolyte exhibits an initial reversible capacity of 1500 mAh gsulfur −1 and excellent cycle performance at 0.25 and 0.5 C rate over 120 cycles at room temperaturemore » « less
-
Lithium‐ion batteries have gradually reached their theoretical limits. To meet the growing demand for higher energy storage technology, finding alternative battery chemistries has become the major concern. Fortunately, lithium–sulfur batteries are considered the most promising next‐generation energy storage technology due to being cost‐effective and having high theoretical energy density. However, the further commercialization of lithium–sulfur batteries is hindered due to the growth of lithium dendrites and the shuttle effect of soluble lithium polysulfides. This review provides an overview of the challenges facing lithium–sulfur batteries. Furthermore, a comprehensive overview of lithium metal protection strategies is provided including electrolyte optimization, construction of artificial solid electrolyte layers, utilization of hosting materials, and design of separators, as well as a theoretical understanding and analysis of the underlying methods. This review puts forward general conclusions and prospects for the practical application of lithium–sulfur batteries in the future and the promotion of technology development of lithium metal batteries.more » « less
An official website of the United States government
