skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Approximate Unitary k-Designs from Shallow, Low-Communication Circuits (Extended Abstract)
Random unitaries are useful in quantum information and related fields but hard to generate with limited resources. An approximate unitary k-design is a measure over an ensemble of unitaries such that the average is close to a Haar (uniformly) random ensemble up to the first k moments. A strong notion of approximation bounds the distance from Haar randomness in relative error: the weighted twirl induced by an approximate design can be written as a convex combination involving that of an exact design and vice versa. The main focus of our work is on efficient constructions of approximate designs, in particular whether relative-error designs in sublinear depth are possible. We give a positive answer to this question as part of our main results: 1. Twirl-Swap-Twirl: Let A and B be systems of the same size. Consider a protocol that locally applies k-design unitaries to A^k and B^k respectively, then exchanges l qudits between each copy of A and B respectively, then again applies local k-design unitaries. This protocol yields an ε-approximate relative k-design when l = O(k log k + log(1/ε)). In particular, this bound is independent of the size of A and B as long as it is sufficiently large compared to k and 1/ε. 2. Twirl-Crosstwirl: Let A_1, … , A_P be subsystems of a multipartite system A. Consider the following protocol for k copies of A: (1) locally apply a k-design unitary to each A_p for p = 1, … , P; (2) apply a "crosstwirl" k-design unitary across a joint system combining l qudits from each A_p. Assuming each A_p’s dimension is sufficiently large compared to other parameters, one can choose l to be of the form 2 (Pk + 1) log_q k + log_q P + log_q(1/ε) + O(1) to achieve an ε-approximate relative k-design. As an intermediate step, we show that this protocol achieves a k-tensor-product-expander, in which the approximation error is in 2 → 2 norm, using communication logarithmic in k. 3. Recursive Crosstwirl: Consider an m-qudit system with connectivity given by a lattice in spatial dimension D. For every D = 1, 2, …, we give a construction of an ε-approximate relative k-design using unitaries of spatially local circuit depth O ((log m + log(1/ε) + k log k ) k polylog(k)). Moreover, across the boundaries of spatially contiguous sub-regions, unitaries used in the design ensemble require only area law communication up to corrections logarithmic in m. Hence they generate only that much entanglement on any product state input. These constructions use the alternating projection method to analyze overlapping Haar twirls, giving a bound on the convergence speed to the full twirl with respect to the 2-norm. Using von Neumann subalgebra indices to replace system dimension, the 2-norm distance converts to relative error without introducing system size. The Recursive Crosstwirl construction answers one variant of [Harrow and Mehraban, 2023, Open Problem 1], showing that with a specific, layered architecture, random circuits produce relative error k-designs in sublinear depth. Moreover, it addresses [Harrow and Mehraban, 2023, Open Problem 7], showing that structured circuits in spatial dimension D of depth << m^{1/D} may achieve approximate k-designs.  more » « less
Award ID(s):
2137953
PAR ID:
10628108
Author(s) / Creator(s):
;
Editor(s):
Meka, Raghu
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
325
ISSN:
1868-8969
ISBN:
978-3-95977-361-4
Page Range / eLocation ID:
69:1-69:2
Subject(s) / Keyword(s):
Approximate unitary designs Quantum circuits Representation theory von Neumann algebras Theory of computation → Quantum information theory
Format(s):
Medium: X Size: 2 pages; 416417 bytes Other: application/pdf
Size(s):
2 pages 416417 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Tauman Kalai, Yael (Ed.)
    We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}. We systematically study IP_N, showing the following results, near tight in most cases: 1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{-6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3 - we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{-6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{-1} + q^{-1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{-2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{-2})). 2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{-max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{-max(2,p)}) for ε^{-max(2,p)} ≪ n. 3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding implies protocol with communication k^𝒪(log log k) log² n. 4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{-2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P'). 
    more » « less
  2. Ene, Alina; Chattopadhyay, Eshan (Ed.)
    We study the classic Max-Cut problem under multiple cardinality constraints, which we refer to as the Constrained Max-Cut problem. Given a graph G = (V, E), a partition of the vertices into c disjoint parts V₁, …, V_c, and cardinality parameters k₁, …, k_c, the goal is to select a set S ⊆ V such that |S ∩ V_i| = k_i for each i ∈ [c], maximizing the total weight of edges crossing S (i.e., edges with exactly one endpoint in S).\r\nBy designing an approximate kernel for Constrained Max-Cut and building on the correlation rounding technique of Raghavendra and Tan (2012), we present a (0.858 - ε)-approximation algorithm for the problem when c = O(1). The algorithm runs in time O(min{k/ε, n}^poly(c/ε) + poly(n)), where k = ∑_{i∈[c]} k_i and n = |V|. This improves upon the (1/2 + ε₀)-approximation of Feige and Langberg (2001) for Max-Cut_k (the special case when c = 1, k₁ = k), and generalizes the (0.858 - ε)-approximation of Raghavendra and Tan (2012), which only applies when min{k,n-k} = Ω(n) and does not handle multiple constraints.\r\nWe also establish that, for general values of c, it is NP-hard to determine whether a feasible solution exists that cuts all edges. Finally, we present a 1/2-approximation algorithm for Max-Cut under an arbitrary matroid constraint. 
    more » « less
  3. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less
  4. Given a metric space ℳ = (X,δ), a weighted graph G over X is a metric t-spanner of ℳ if for every u,v ∈ X, δ(u,v) ≤ δ_G(u,v) ≤ t⋅ δ(u,v), where δ_G is the shortest path metric in G. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points (s₁, …, s_n), where the points are presented one at a time (i.e., after i steps, we have seen S_i = {s₁, … , s_i}). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a t-spanner G_i for S_i for all i, while minimizing the number of edges, and their total weight. Under the L₂-norm in ℝ^d for arbitrary constant d ∈ ℕ, we present an online (1+ε)-spanner algorithm with competitive ratio O_d(ε^{-d} log n), improving the previous bound of O_d(ε^{-(d+1)}log n). Moreover, the spanner maintained by the algorithm has O_d(ε^{1-d}log ε^{-1})⋅ n edges, almost matching the (offline) optimal bound of O_d(ε^{1-d})⋅ n. In the plane, a tighter analysis of the same algorithm provides an almost quadratic improvement of the competitive ratio to O(ε^{-3/2}logε^{-1}log n), by comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ω_d(ε^{-d}) lower bound for the competitive ratio for online (1+ε)-spanner algorithms in ℝ^d under the L₁-norm. Then we turn our attention to online spanners in general metrics. Note that, it is not possible to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch factor t = (2k-1)(1+ε) for k ≥ 2 and ε ∈ (0,1), we show that it maintains a spanner with O(ε^{-1}logε^{-1})⋅ n^{1+1/k} edges and O(ε^{-1}n^{1/k}log² n) lightness for a sequence of n points in a metric space. We show that these bounds cannot be significantly improved, by introducing an instance that achieves an Ω(1/k⋅ n^{1/k}) competitive ratio on both sparsity and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness for points in ultrametrics, showing that one can maintain a (2+ε)-spanner for ultrametrics with O(ε^{-1}logε^{-1})⋅ n edges and O(ε^{-2}) lightness. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    The multicommodity flow problem is a classic problem in network flow and combinatorial optimization, with applications in transportation, communication, logistics, and supply chain management, etc. Existing algorithms often focus on low-accuracy approximate solutions, while high-accuracy algorithms typically rely on general linear program solvers. In this paper, we present efficient high-accuracy algorithms for a broad family of multicommodity flow problems on undirected graphs, demonstrating improved running times compared to general linear program solvers. Our main result shows that we can solve the 𝓁_{q, p}-norm multicommodity flow problem to a (1 + ε) approximation in time O_{q, p}(m^{1+o(1)} k² log(1/ε)), where k is the number of commodities, and O_{q, p}(⋅) hides constants depending only on q or p. As q and p approach to 1 and ∞ respectively, 𝓁_{q, p}-norm flow tends to maximum concurrent flow. We introduce the first iterative refinement framework for 𝓁_{q, p}-norm minimization problems, which reduces the problem to solving a series of decomposable residual problems. In the case of k-commodity flow, each residual problem can be decomposed into k single commodity convex flow problems, each of which can be solved in almost-linear time. As many classical variants of multicommodity flows were shown to be complete for linear programs in the high-accuracy regime [Ding-Kyng-Zhang, ICALP'22], our result provides new directions for studying more efficient high-accuracy multicommodity flow algorithms. 
    more » « less