skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 21, 2026

Title: Biochemical methods for producing and characterising recombinant spider silks
Here, we review the processes involved in producing and assessing the quality of recombinant spider silk proteins (spidroins) and the challenges associated with their synthesis and spinning into robust fibres. We provide an overview of the techniques used to produce the proteins, from gene synthesis to expression in various host organisms. Evidence suggests that the N- and C-terminal regions of spidroins are of utmost importance for fibre assembly and the repetitive domains are responsible for the unique mechanical properties in both native and recombinant versions of spider silks. We describe the role of liquid–liquid phase separation (LLPS) in spidroin assembly and its importance in subsequent fibre formation. Recent developments in recombinant spidroin production and co-expression strategies for improving yield and scalability are highlighted. Techniques such as mass photometry and size exclusion chromatography (SEC) for analysing protein purity and assembly behaviour are thereupon detailed. Finally, we address the role that predictive computational methods play in the future of designing novel and high-performing materials inspired by spidroins.  more » « less
Award ID(s):
2105312
PAR ID:
10628181
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Arachnid Science
Volume:
3
ISSN:
2813-5083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Macqueen, D (Ed.)
    Abstract Spider silks are renowned for their high-performance mechanical properties. Contributing to these properties are proteins encoded by the spidroin (spider fibroin) gene family. Spidroins have been discovered mostly through cDNA studies of females based on the presence of conserved terminal regions and a repetitive central region. Recently, genome sequencing of the golden orb-web weaver, Trichonephila clavipes, provided a complete picture of spidroin diversity. Here, we refine the annotation of T. clavipes spidroin genes including the reclassification of some as non-spidroins. We rename these non-spidroins as spidroin-like (SpL) genes because they have repetitive sequences and amino acid compositions like spidroins, but entirely lack the archetypal terminal domains of spidroins. Insight into the function of these spidroin and SpL genes was then examined through tissue- and sex-specific gene expression studies. Using qPCR, we show that some silk genes are upregulated in male silk glands compared to females, despite males producing less silk in general. We also find that an enigmatic spidroin that lacks a spidroin C-terminal domain is highly expressed in silk glands, suggesting that spidroins could assemble into fibers without a canonical terminal region. Further, we show that two SpL genes are expressed in silk glands, with one gene highly evolutionarily conserved across species, providing evidence that particular SpL genes are important to silk production. Together, these findings challenge long-standing paradigms regarding the evolutionary and functional significance of the proteins and conserved motifs essential for producing spider silks. 
    more » « less
  2. Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable–properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains. 
    more » « less
  3. Signore, Giovanni (Ed.)
    Cobweb weaving spiders and their relatives spin multiple task-specific fiber types. The unique material properties of each silk type result from differences in amino acid sequence and structure of their component proteins, primarily spidroins (spider fibrous proteins). Amino acid content and gene expression measurements of spider silks suggest some spiders change expression patterns of individual protein components in response to environmental cues. We quantified mRNA abundance of three spidroin encoding genes involved in prey capture in the common house spider, Parasteatoda tepidariorum (Theridiidae), fed different diets. After 10 days of acclimation to the lab on a diet of mealworms, spiders were split into three groups: (1) individuals were immediately dissected, (2) spiders were fed high-energy crickets, or (3) spiders were fed low-energy flies, for 1 month. All spiders gained mass during the acclimation period and cricket-fed spiders continued to gain mass, while fly-fed spiders either maintained or lost mass. Using quantitative PCR, we found no significant differences in the absolute or relative abundance of dragline gene transcripts, major ampullate spidroin 1 ( MaSp1 ) and major ampullate spidroin 2 ( MaSp2 ), among groups. In contrast, prey-wrapping minor ampullate spidroin ( MiSp) gene transcripts were significantly less abundant in fly-fed than lab-acclimated spiders. However, when measured relative to Actin , cricket-fed spiders showed the lowest expression of MiSp . Our results suggest that house spiders are able to maintain silk production, even in the face of a low-quality diet. 
    more » « less
  4. Abstract BackgroundSpiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaverUloborus diversus. ResultsWe show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers. ConclusionsOur finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups. 
    more » « less
  5. Abstract BackgroundSilk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. ResultsIn this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in theBacillusgenus. Using an industrially relevantB. megateriumhost, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. ConclusionIt is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for anE. colihost producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in theBacillushost system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor. 
    more » « less