Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 11, 2026
-
Here, we review the processes involved in producing and assessing the quality of recombinant spider silk proteins (spidroins) and the challenges associated with their synthesis and spinning into robust fibres. We provide an overview of the techniques used to produce the proteins, from gene synthesis to expression in various host organisms. Evidence suggests that the N- and C-terminal regions of spidroins are of utmost importance for fibre assembly and the repetitive domains are responsible for the unique mechanical properties in both native and recombinant versions of spider silks. We describe the role of liquid–liquid phase separation (LLPS) in spidroin assembly and its importance in subsequent fibre formation. Recent developments in recombinant spidroin production and co-expression strategies for improving yield and scalability are highlighted. Techniques such as mass photometry and size exclusion chromatography (SEC) for analysing protein purity and assembly behaviour are thereupon detailed. Finally, we address the role that predictive computational methods play in the future of designing novel and high-performing materials inspired by spidroins.more » « lessFree, publicly-accessible full text available January 21, 2026
-
Amorphous Indomethacin has enhanced bioavailability over its crystalline forms, yet amorphous forms can still possess a wide variety of structures. Here, Empirical Potential Structure Refinement (EPSR) has been used to provide accurate molecular models on the structure of five different amorphous Indomethacin samples, that are consistent with their high-energy X-ray diffraction patterns. It is found that the majority of molecules in amorphous Indomethacin are non-bonded or bonded to one neighboring molecule via a single hydrogen bond, in contrast to the doubly bonded dimers found in the crystalline state. The EPSR models further indicate a substantial variation in hydrogen bonding between different amorphous forms, leading to a diversity of chain structures not found in any known crystal structures. The majority of hydrogen bonds are associated with the carboxylic acid group, although a significant number of amide hydrogen bonding interactions are also found in the models. Evidence of some dipole–dipole interactions are also observed in the more structurally ordered models. The results are consistent with a distribution of Z-isomer intramolecular type conformations in the more disordered structures, that distort when stronger intermolecular hydrogen bonding occurs. The findings are supported by 1H and 2H NMR studies of the hydrogen bond dynamics in amorphous Indomethacin.more » « less
-
Natural glues offer great potential as bio-inspired solutions to problems associated with the performance of synthetic adhesives. Spider viscous glues are elastic pressure sensitive adhesives (PSAs) that physically adhere to surfaces on contact across a range of environmental conditions. Extracting useful components from these secretions remains a challenge that can be met by the comparative analyses of functional analogues. Here we used 1 H NMR spectroscopy and mass spectrometry to ascertain the organic salt compositions of the PSAs of four different species of Australian spiders belonging to two lineages that independently acquired aqueous gluey secretions: the St Andrew’s cross ( Argiope keyserlingi ), the redback ( Latrodectus hasselti ), the false widow ( Steatoda grossa ), and the daddy long-legs spider ( Pholcus phalangiodes ). The PSAs from each of these spiders contained similar organic salts, albeit in variable concentrations. The adhesives of the false widow and daddy long-legs spider had mixtures of only a few components, of which betaine predominated, while the PSAs of the other spiders predominantly contained small organic acids such as GABA/GABA-amide, isethionate, and choline salts. Our results suggest that the PSA composition of spiders is likely to be influenced more by environmental factors than evolutionary history and are guided by common principles. Our findings could be valuable for facilitating the design of more sustainable synthetic glues.more » « less
-
Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.more » « less
An official website of the United States government
