Abstract Self‐sustaining photocatalytic NO3−reduction systems could become ideal NO3−removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3−. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−−N) aqueous solution of NO3−, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3−conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3−conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3−reduction to occur on the Ni2P surface.
more »
« less
This content will become publicly available on January 9, 2026
Tuning the selectivity of bimetallic Cu electrocatalysts for CO2 reduction using atomic layer deposition
Synthesis of bimetallic electrocatalysts for CO2 reduction using atomic layer deposition results in changes in chemical state and product selectivity.
more »
« less
- Award ID(s):
- 2131709
- PAR ID:
- 10628256
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 61
- Issue:
- 5
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 965 to 968
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polyhedral nitrogen containing molecules such as prismatic P3N3- a hitherto elusive isovalent species of prismane (C6H6) - have attracted particular attention from the theoretical, physical, and synthetic chemistry communities. Here we report on the preparation of prismatic P3N3[1,2,3-triaza-4,5,6-triphosphatetracyclo[2.2.0.02,6.03,5]hexane] by exposing phosphine (PH3) and nitrogen (N2) ice mixtures to energetic electrons. Prismatic P3N3was detected in the gas phase and discriminated from its isomers utilizing isomer selective, tunable soft photoionization reflectron time-of-flight mass spectrometry during sublimation of the ices along with an isomer-selective photochemical processing converting prismatic P3N3to 1,2,4-triaza-3,5,6-triphosphabicyclo[2.2.0]hexa-2,5-diene (P3N3). In prismatic P3N3, the P–P, P–N, and N–N bonds are lengthened compared to those in, e.g., diphosphine (P2H4), di-anthracene stabilized phosphorus mononitride (PN), and hydrazine (N2H4), by typically 0.03–0.10 Å. These findings advance our fundamental understanding of the chemical bonding of poly-nitrogen and poly-phosphorus systems and reveal a versatile pathway to produce exotic, ring-strained cage molecules.more » « less
-
Abstract There is a strong impetus to establish a circular phosphorus economy by securing internally renewable phosphate (Pi) resources for use as agricultural fertilizers. Reversible Piadsorption technologies such as ion exchange can remove and recover Pifrom water/wastewater for reuse. However, existing reversible adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity between As(V) and Pichemical structure. If As(V) is co‐recovered with Pi, the value of the recovered products for agricultural reuse is low. The objective of this study was to construct an immobilized phosphate‐binding protein (PBP)‐based Piremoval and recovery system and analyze its selectivity for Piadsorption in the presence of As(V). A range of conditions was tested, including independent, sequential, and simultaneous exposure of the two oxyanions to immobilized PBP (PBP resin). The purity of the recovered Piproduct was assessed after inducing controlled desorption of the adsorbed oxyanions at high pH (pH 12.5). Piconstituted more than 97% of the adsorbed oxyanions in the recovered product, even when As(V) was initially present at twofold higher concentrations than Pi. Therefore, PBP resin has potential to selectively remove Pi, as well as release high‐purity Pifree of As(V) contamination suitable for subsequent agricultural reuse. Practitioner pointsExisting reversible phosphate (Pi) adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity in their chemical structure.Co‐recovery of As(V) with Pican reduce the recovered product's reuse as a fertilizer.An immobilized phosphate‐binding protein (PBP)‐based system can be highly selective for Pieven in the presence of As(V).Piconstituted more than 97% of the recovered product, even when As(V) was present at 2‐fold higher concentrations than Pi.Immobilized PBP offers advantages over existing Piadsorbents by providing high‐purity Piproducts free of As(V) contamination for reuse.more » « less
-
Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems.more » « less
-
Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting.more » « less
An official website of the United States government
