We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.
more »
« less
This content will become publicly available on July 16, 2026
The Zaremba problem in two-dimensional Lipschitz graph domains
We study the Zaremba problem, or mixed problem associated to the Laplace operator, in two-dimensional Lipschitz graph domains with mixed Dirichlet and Neumann boundary data in Lebesgue and Lorentz spaces. We obtain an explicit value such that the Zaremba problem is solvable in for and in the Lorentz space . Applications include those where the domain is a cone with vertex at the origin and, more generally, a Schwarz–Christoffel domain. The techniques employed are based on results of the Zaremba problem in the upper half-plane, the use of conformal maps and the theory of solutions to the Neumann problem. For the case when the domain is the upper half-plane, we work in the weighted setting, establishing conditions on the weights for the existence of solutions and estimates for the non-tangential maximal function of the gradient of the solution. In particular, in the -unweighted case, where known examples show that the gradient of the solution may fail to be squared-integrable, we prove restricted weak-type estimates.
more »
« less
- Award ID(s):
- 2154113
- PAR ID:
- 10628287
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 378
- Issue:
- 10
- ISSN:
- 0002-9947
- Page Range / eLocation ID:
- 6885–6911
- Subject(s) / Keyword(s):
- Mixed problem Zaremba problem Lipschitz graph domain Lebesgue and Lorentz spaces Muckenhoupt weights Hilbert transform.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
-
We study regularity of solutions to on a relatively compact domain in a complex manifold of dimension , where is a form. Assume that there are either negative or positive Levi eigenvalues at each point of boundary . Under the necessary condition that a locally solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain derivative when and is in the Hölder–Zygmund space with . For , the same regularity for the solutions is achieved when is either sufficiently smooth or of positive Levi eigenvalues everywhere on .more » « less
-
Let be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to .more » « less
-
In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively.more » « less
An official website of the United States government
