In montane areas, climate change can shift tree species distributions upslope over time which can affect forest ecosystem structure and functioning. Seedlings of low-elevation temperate broadleaf trees establishing beyond their ranges at high elevations need to overcome both herbivore pressure and soil nutrient limitations. To assess the influence of these two stressors, we quantified leaf and stem herbivory, soil and foliar nutrient status, and two-year survival of experimentally grown seedlings of two hardwood species, sugar maple (Acer saccharum) and American beech (Fagus grandifolia) along elevation gradients in the Green Mountains of Vermont, USA. While insect foliar herbivory was reduced on maple seedlings growing beyond range boundaries, suggesting enemy escape, the opposite pattern was observed for beech. Mammalian browsing increased with elevation for both species. In general, foliar nutrient concentrations and resource utilization (that is, the relationship between soil nutrient availability and foliar nutrient status) declined with elevation for both species (although more so for maple, especially calcium), while toxic foliar aluminum concentrations increased for maple. Survival decreased with elevation for both species, but especially for sugar maple, linked more to declining foliar nutrient status than herbivory at higher elevations. Thus, the effects of herbivory and nutrient utilization on seedling survival can be critical for shaping tree species range shifts and, ultimately, species composition and forest ecosystem functioning.
more »
« less
Mycorrhizal fungi as critical biotic filters for tree seedling establishment during species range expansions
Abstract Global warming has been shifting climatic envelopes of many tree species to higher latitudes and elevations across the globe; however, unsuitable soil biota may inhibit tree migrations into these areas of suitable climate. Specifically, the role of mycorrhizal fungi in facilitating tree seedling establishment beyond natural species range limits has not been fully explored within forest ecosystems. We used three experiments to isolate and quantify the effects of mycorrhizal colonization and common mycorrhizal networks (CMN) on tree seedling survival and growth across (within and beyond) the elevational ranges of two dominant tree species in northeastern North America, which were associated with either arbuscular mycorrhiza (AMF,Acer saccharum) or ectomycorrhiza (EMF,Fagus grandifolia). In order to quantify the influence of mycorrhiza on seedling establishment independent of soil chemistry and climate, we grew seedlings in soils from within and beyond our study species ranges in a greenhouse experiment (GE) as well as in the field using a soil translocation experiment (STE) and another field experiment manipulating seedling connections to potential CMNs (CMNE). Root length colonized, seedling survival and growth, foliar nutrients, and the presence of potential root pathogens were examined as metrics influencing plant performance across species' ranges. Mycorrhizal inoculum from within species ranges, but not from outside, increased seedling survival and growth in a greenhouse setting; however, only seedling survival, and not growth, was significantly improved in field studies. Sustained potential connectivity to AMF networks increased seedling survival across the entire elevational range ofA. saccharum. Although seedlings disconnected from a potential CMN did not suffer decreased foliar nutrient levels compared with connected seedlings, disconnected AM seedlings, but not EM seedlings, had significantly higher aluminum concentrations and more potential pathogens present. Our results indicate that mycorrhizal fungi may facilitate tree seedling establishment beyond species range boundaries in this forested ecosystem and that the magnitude of this effect is modulated by the dominant mycorrhizal type present (i.e., AM vs. EM). Thus, despite changing climate conditions beyond species ranges, a lack of suitable mutualists can still limit successful seedling establishment and stall adaptive climate‐induced shifts in tree species distributions.
more »
« less
- Award ID(s):
- 1759724
- PAR ID:
- 10628311
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecological Monographs
- Volume:
- 94
- Issue:
- 4
- ISSN:
- 0012-9615
- Page Range / eLocation ID:
- e1634
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wiley (Ed.)ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth.more » « less
-
Aims: Climate change is expected to shift climatic envelopes of temperate tree species into boreal forests where unsuitable soils may limit range expansion. We studied several edaphic thresholds (mycorrhizae, soil chemistry) that can limit seedling establishment of two major temperate tree species, sugar maple (arbuscular mycorrhizal, AM) and American beech (ectomycorrhizal, EM). Methods: We integrate two field surveys of tree seedling density, mycorrhizal colonization, and soil chemistry in montane forests of the Adirondack and Green Mountains (Mtns) in the northeastern United States. We conducted correlation and linear breakpoint analyses to detect soil abiotic and biotic thresholds in seedling distributions across edaphic gradients. Results: In the Green Mtns, sugar maple seedling importance (an index of species relative density and frequency, IV) declined sharply with low pH (< 3.74 in mineral soil) and low mycorrhizal colonization (< 27.5% root length colonized). Sugar maple importance was highly correlated with multiple aspects of soil chemistry, while beech was somewhat sensitive to pH only; beech mycorrhizal colonization did not differ across elevation. Mycorrhizal colonization of sugar maple was positively correlated with soil pH and conspecific overstory basal area. In the Adirondacks, sugar maple importance, but not beech, plateaued above thresholds in soil calcium (~ 2 meq/100 g) and magnesium (~ 0.3 meq/100 g). Conclusions: The establishment of sugar maple, but not beech, was impeded by both biotic and abiotic soil components in montane conifer forests and by soil acidity in temperate deciduous forests. These differences in species sensitivity to edaphic thresholds will likely affect species success and future shifts in forest composition.more » « less
-
Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions amongAndropogon gerardiiseedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.more » « less
-
Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- vs. ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

