skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A driven Kerr oscillator with two-fold degeneracies for qubit protection
We present the experimental finding of multiple simultaneous two-fold degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing drive resulting from a three-wave mixing process, in combination with the Kerr interaction, creates an effective static two-well potential in the phase space rotating at half the frequency of the sinusoidal drive generating the squeezing. Remarkably, these degeneracies can be turned on-and-off on demand, as well as their number by simply adjusting the frequency of the squeezing drive. We find that when the detuning Δ between the frequency of the oscillator and the second subharmonic of the drive equals an even multiple of the Kerr coefficientK, Δ / K = 2 m , the oscillator displays m + 1 exact, parity-protected, spectral degeneracies, insensitive to the drive amplitude. These degeneracies can be explained by the unusual destructive interference of tunnel paths in the classically forbidden region of the double well static effective potential that models our experiment. Exploiting this interference, we measure a peaked enhancement of the incoherent well-switching lifetime, thus creating a protected cat qubit in the ground state manifold of our oscillator. Our results illustrate the relationship between degeneracies and noise protection in a driven quantum system.  more » « less
Award ID(s):
2124511
PAR ID:
10628343
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
24
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO 2 :7%Y from the mixed monoclinic ( P 2 1 / c ) + antipolar orthorhombic ( Pbca ) phase to pure antipolar orthorhombic ( Pbca ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the Pbca metastable state at 300 K. Compression also drives polar orthorhombic ( P c a 2 1 ) hafnia into the tetragonal ( P 4 2 / n m c ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO 2
    more » « less
  2. Abstract We study the symmetries of the static effective Hamiltonian of a driven superconducting nonlinear oscillator, the so-called squeeze-driven Kerr Hamiltonian, and discover a remarkable quasi-spin symmetrysu(2) at integer values of the ratio η = Δ / K of the detuning parameter Δ to the Kerr coefficientK. We investigate the stability of this newly discovered symmetry to high-order perturbations arising from the static effective expansion of the driven Hamiltonian. Our finding may find applications in the generation and stabilization of states useful for quantum computing. Finally, we discuss other Hamiltonians with similar properties and within reach of current technologies. 
    more » « less
  3. MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti 3 C 2 T x MXene monoflakes have exceptional thermal stability at temperatures up to 600 ° C in air, while multiflakes readily oxidize in air at 300 ° C. Density functional theory calculations indicate that confined water between Ti 3 C 2 T x flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti 3 C 2 T x films at 600 ° C, resulting in substantial stability improvement in multiflake films (can withstand 600 ° C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti 3 C 2 T x oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability. 
    more » « less
  4. Abstract Parker Solar Probe (PSP) observed sub-Alfvénic solar wind intervals during encounters 8–14, and low-frequency magnetohydrodynamic (MHD) turbulence in these regions may differ from that in super-Alfvénic wind. We apply a new mode decomposition analysis to the sub-Alfvénic flow observed by PSP on 2021 April 28, identifying and characterizing entropy, magnetic islands, forward and backward Alfvén waves, including weakly/nonpropagating Alfvén vortices, forward and backward fast and slow magnetosonic (MS) modes. Density fluctuations are primarily and almost equally entropy- and backward-propagating slow MS modes. The mode decomposition provides phase information (frequency and wavenumberk) for each mode. Entropy density fluctuations have a wavenumber anisotropy ofk≫k, whereas slow-mode density fluctuations havek>k. Magnetic field fluctuations are primarily magnetic island modes (δBi) with anO(1) smaller contribution from unidirectionally propagating Alfvén waves (δBA+) giving a variance anisotropy of δ B i 2 / δ B A 2 = 4.1 . Incompressible magnetic fluctuations dominate compressible contributions from fast and slow MS modes. The magnetic island spectrum is Kolmogorov-like k 1.6 in perpendicular wavenumber, and the unidirectional Alfvén wave spectra are k 1.6 and k 1.5 . Fast MS modes propagate at essentially the Alfvén speed with anticorrelated transverse velocity and magnetic field fluctuations and are almost exclusively magnetic due toβp≪ 1. Transverse velocity fluctuations are the dominant velocity component in fast MS modes, and longitudinal fluctuations dominate in slow modes. Mode decomposition is an effective tool in identifying the basic building blocks of MHD turbulence and provides detailed phase information about each of the modes. 
    more » « less
  5. Yoshimura origami is a classical folding pattern that has inspired many deployable structure designs. Its applications span from space exploration, kinetic architectures and soft robots to even everyday household items. However, despite its wide usage, Yoshimura has been fixated on a set of design constraints to ensure its flat foldability. Through extensive kinematic analysis and prototype tests, this study presents a new Yoshimura that intentionally defies these constraints. Remarkably, one can impart a unique meta-stability by using the Golden Ratio angle ( cot 1 1.618 31.72 ) to define the triangular facets of a generalized Yoshimura (with n = 3 , where n is the number of rhombi shapes along its cylindrical circumference). As a result, when its facets are strategically popped out, a ‘Golden Ratio Yoshimura’ boom with m modules can be theoretically reconfigured into 8 m geometrically unique and load-bearing shapes. This result not only challenges the existing design norms but also opens up a new avenue to create deployable and versatile structural systems. This article is part of the theme issue ‘Origami/Kirigami-inspired structures: from fundamentals to applications’. 
    more » « less