skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 27, 2025

Title: Multi-Agent Distributed Decentralized Dynamic Resource Orchestration in 5G Edge-Cloud Networks
Effective resource orchestration for network slicing is critical for optimizing the performance of diverse applications running on next generation communication networks. This paper presents a novel approach that leverages advancements in multi-agent reinforcement learning (MARL) to adaptively learn the resource requirements of various applications in network slices and orchestrate resources in real-time. Our proposed MARL-based orchestration scheme aims to balance the varying requirements of individual network slices, ensuring optimal performance amid dynamic application deployments with limited network information. Simulation results and comparative analyses validate the efficiency and efficacy of our methodology, demonstrating its superiority over traditional methods in terms of system performance and resource utilization. Simulation results indicate that our strategy significantly enhances system utility and efficiency, particularly with limited resources.  more » « less
Award ID(s):
2226232
PAR ID:
10628440
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2771-5663
ISBN:
979-8-3503-7656-2
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Rio de Janeiro, Brazil
Sponsoring Org:
National Science Foundation
More Like this
  1. Network slicing is a promising technology that allows mobile network operators to efficiently serve various emerging use cases in 5G. It is challenging to optimize the utilization of network infrastructures while guaranteeing the performance of network slices according to service level agreements (SLAs). To solve this problem, we propose SafeSlicing that introduces a new constraint-aware deep reinforcement learning (CaDRL) algorithm to learn the optimal resource orchestration policy within two steps, i.e., offline training in a simulated environment and online learning with the real network system. On optimizing the resource orchestration, we incorporate the constraints on the statistical performance of slices in the reward function using Lagrangian multipliers and solve the Lagrangian relaxed problem via a policy network. To satisfy the constraints on the system capacity, we design a constraint network to map the latent actions generated from the policy network to the orchestration actions such that the total resources allocated to network slices do not exceed the system capacity. We prototype SafeSlicing on an end-to-end testbed developed by using OpenAirInterface LTE, OpenDayLight-based SDN, and CUDA GPU computing platform. The experimental results show that SafeSlicing reduces more than 20% resource usage while meeting SLAs of network slices as compared with other solutions. 
    more » « less
  2. Network slicing allows mobile network operators to virtualize infrastructures and provide customized slices for supporting various use cases with heterogeneous requirements. Online deep reinforcement learning (DRL) has shown promising potential in solving network problems and eliminating the simulation-to-reality discrepancy. Optimizing cross-domain resources with online DRL is, however, challenging, as the random exploration of DRL violates the service level agreement (SLA) of slices and resource constraints of infrastructures. In this paper, we propose OnSlicing, an online end-to-end network slicing system, to achieve minimal resource usage while satisfying slices' SLA. OnSlicing allows individualized learning for each slice and maintains its SLA by using a novel constraint-aware policy update method and proactive baseline switching mechanism. OnSlicing complies with resource constraints of infrastructures by using a unique design of action modification in slices and parameter coordination in infrastructures. OnSlicing further mitigates the poor performance of online learning during the early learning stage by offline imitating a rule-based solution. Besides, we design four new domain managers to enable dynamic resource configuration in radio access, transport, core, and edge networks, respectively, at a timescale of subseconds. We implement OnSlicing on an end-to-end slicing testbed designed based on OpenAirInterface with both 4G LTE and 5G NR, OpenDayLight SDN platform, and OpenAir-CN core network. The experimental results show that OnSlicing achieves 61.3% usage reduction as compared to the rule-based solution and maintains nearly zero violation (0.06%) throughout the online learning phase. As online learning is converged, OnSlicing reduces 12.5% usage without any violations as compared to the state-of-the-art online DRL solution. 
    more » « less
  3. During the past few years, all leading cloud providers introduced burstable instances that can sprint their performance for a limited period to address sudden workload variations. Despite the availability of burstable instances, there is no clear understanding of how to minimize the waste of resources by regulating their burst capacity to the workload requirements. This is especially true when it comes to non-CPU-intensive applications. In this paper, we investigate how to limit network and I/O usage to optimize the efficiency of the bursting process. We also study which resource shall be controlled to benefit both cloud providers and end-users. We design MRburst (Multi-Resource burstable performance scheduler) to automatically limit multiple resources (i.e., network, I/O, and CPU) and make the application comply with a user-defined service level objective (SLO) while minimizing wasted resources. MRburst is evaluated on Amazon EC2 using two multi-resource applications: an FTP server and a Ceph system. Experimental results show that MRburst outperforms state-of-the-art approaches by allowing instances to speed up their performance for up to 2.4 times longer period while meeting SLO. 
    more » « less
  4. Open radio access networks (e.g., O-RAN) facilitate fine-grained control (e.g., near-RT RIC) in next-generation networks, necessitating advanced AI/ML techniques in handling online resource orchestration in real-time. However, existing approaches can hardly adapt to time-evolving network dynamics in network slicing, leading to significant online performance degradation. In this paper, we propose AdaSlicing, a new adaptive network slicing system, to online learn to orchestrate virtual resources while efficiently adapting to continual network dynamics. The AdaSlicing system includes a new soft-isolated RAN virtualization framework and a novel AdaOrch algorithm. We design the AdaOrch algorithm by integrating AI/ML techniques (i.e., Bayesian learning agents) and optimization methods (i.e., the ADMM coordinator). We design the soft-isolated RAN virtualization to improve the virtual resource utilization of slices while assuring the isolation among virtual resources at runtime. We implement AdaSlicing on an O-RAN compliant network testbed by using OpenAirInterface RAN, Open5GS Core, and FlexRIC near-RT RIC, with Ettus USRP B210 SDR. With extensive network experiments, we demonstrate that AdaSlicing substantially outperforms state-of-the-art works with 64.2% cost reduction and 45.5% normalized performance improvement, which verifies its high adaptability, scalability, and assurance. 
    more » « less
  5. This research proposes a dynamic resource allocation method for vehicle-to-everything (V2X) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented challenges in how to fully utilize the limited physical-layer resources, given the fact that most of the applications require both ultra low latency, high data rate and high reliability. Resource allocation plays a pivotal role to satisfy such requirements as well as guarantee quality of service (QoS). Based on this observation, a novel fuzzy-logic-assisted Q learning model (FAQ) is proposed to intelligently and dynamically allocate resources by taking advantage of the centralized allocation mode. The proposed FAQ model reuses the resources to maximize the network throughput while minimizing the interference caused by concurrent transmissions. The fuzzy-logic module expedites the learning and improves the performance of the Q-learning. A mathematical model is developed to analyze the network throughput considering the interference. To evaluate the performance, a system model for V2X communications is built for urban areas, where various V2X services are deployed in the network. Simulation results show that the proposed FAQ algorithm can significantly outperform deep reinforcement learning, Q-learning and other advanced allocation strategies regarding the convergence speed and the network throughput. 
    more » « less