skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Constraint-Aware Deep Reinforcement Learning for End-to-End Resource Orchestration in Mobile Networks
Network slicing is a promising technology that allows mobile network operators to efficiently serve various emerging use cases in 5G. It is challenging to optimize the utilization of network infrastructures while guaranteeing the performance of network slices according to service level agreements (SLAs). To solve this problem, we propose SafeSlicing that introduces a new constraint-aware deep reinforcement learning (CaDRL) algorithm to learn the optimal resource orchestration policy within two steps, i.e., offline training in a simulated environment and online learning with the real network system. On optimizing the resource orchestration, we incorporate the constraints on the statistical performance of slices in the reward function using Lagrangian multipliers and solve the Lagrangian relaxed problem via a policy network. To satisfy the constraints on the system capacity, we design a constraint network to map the latent actions generated from the policy network to the orchestration actions such that the total resources allocated to network slices do not exceed the system capacity. We prototype SafeSlicing on an end-to-end testbed developed by using OpenAirInterface LTE, OpenDayLight-based SDN, and CUDA GPU computing platform. The experimental results show that SafeSlicing reduces more than 20% resource usage while meeting SLAs of network slices as compared with other solutions.  more » « less
Award ID(s):
2147624 2147821
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 29th International Conference on Network Protocols (ICNP)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network slicing allows mobile network operators to virtualize infrastructures and provide customized slices for supporting various use cases with heterogeneous requirements. Online deep reinforcement learning (DRL) has shown promising potential in solving network problems and eliminating the simulation-to-reality discrepancy. Optimizing cross-domain resources with online DRL is, however, challenging, as the random exploration of DRL violates the service level agreement (SLA) of slices and resource constraints of infrastructures. In this paper, we propose OnSlicing, an online end-to-end network slicing system, to achieve minimal resource usage while satisfying slices' SLA. OnSlicing allows individualized learning for each slice and maintains its SLA by using a novel constraint-aware policy update method and proactive baseline switching mechanism. OnSlicing complies with resource constraints of infrastructures by using a unique design of action modification in slices and parameter coordination in infrastructures. OnSlicing further mitigates the poor performance of online learning during the early learning stage by offline imitating a rule-based solution. Besides, we design four new domain managers to enable dynamic resource configuration in radio access, transport, core, and edge networks, respectively, at a timescale of subseconds. We implement OnSlicing on an end-to-end slicing testbed designed based on OpenAirInterface with both 4G LTE and 5G NR, OpenDayLight SDN platform, and OpenAir-CN core network. The experimental results show that OnSlicing achieves 61.3% usage reduction as compared to the rule-based solution and maintains nearly zero violation (0.06%) throughout the online learning phase. As online learning is converged, OnSlicing reduces 12.5% usage without any violations as compared to the state-of-the-art online DRL solution. 
    more » « less
  2. Model predictive control (MPC) provides a useful means for controlling systems with constraints, but suffers from the computational burden of repeatedly solving an optimization problem in real time. Offline (explicit) solutions for MPC attempt to alleviate real time computational challenges using either multiparametric programming or machine learning. The multiparametric approaches are typically applied to linear or quadratic MPC problems, while learning-based approaches can be more flexible and are less memory-intensive. Existing learning-based approaches offer significant speedups, but the challenge becomes ensuring constraint satisfaction while maintaining good performance. In this paper, we provide a neural network parameterization of MPC policies that explicitly encodes the constraints of the problem. By exploring the interior of the MPC feasible set in an unsupervised learning paradigm, the neural network finds better policies faster than projection-based methods and exhibits substantially shorter solve times. We use the proposed policy to solve a robust MPC problem, and demonstrate the performance and computational gains on a standard test system. 
    more » « less
  3. This paper focuses on optimizing resource allocation amongst a set of tenants, network slices, supporting dynamic customer loads over a set of distributed resources, e.g., base stations. The aim is to reap the benefits of statistical multiplexing resulting from flexible sharing of ‘pooled’ resources, while enabling tenants to differentiate and protect their performance from one another’s load fluctuations. To that end we consider a setting where resources are grouped into Virtual Resource Pools (VRPs) wherein resource allocation is jointly and dynam- ically managed. Specifically for each VRP we adopt a Share- Constrained Proportionally Fair (SCPF) allocation scheme where each tenant is allocated a fixed share (budget). This budget is to be distributed equally amongst its active customers which in turn are granted fractions of their associated VRP resources in proportion to customer shares. For a VRP with a single resource, this translates to the well known Generalized Processor Sharing (GPS) policy. For VRPs with multiple resources SCPF provides a flexible means to achieve load elastic allocations across tenants sharing the pool. Given tenants’ per resource shares and expected loads, this paper formulates the problem of determining optimal VRP partitions which maximize the overall expected shared weighted utility while ensuring protection guarantees. For a high load/capacity setting we exhibit this network utility function explicitly, quantifying the benefits and penalties of any VRP partition, in terms of network slices’ ability to achieve performance differentiation, load balancing, and statistical multiplexing. Although the problem is shown to be NP-Hard, a simple greedy heuristic is shown to be effective. Analysis and simulations confirm that the selection of optimal VRP partitions provide a practical avenue towards improving network utility in network slicing scenarios with dynamic loads. 
    more » « less
  4. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: (G. Koutsandria). (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  5. In this paper, we investigate the reliability in an unmanned aerial vehicle (UAV) assisted caching-based downlink network where non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes are adopted. In this network, the ground user equipments (GUEs) request contents from a distant base station (BS) but there are no direct links from the BS to the GUEs. A UAV with limited cache size is employed to assist the BS to complete the communication by either first requesting the uncached contents from the BS and then serving the GUEs or directly sending the cached contents to the GUEs. In this setting, we first introduce the decoding error rate in the FBL regime as well as the caching policy at the UAV, and subsequently we construct an optimization problem aiming to minimize the maximum end-to-end decoding error rate among all GUEs under both coding length and maximum UAV transmission power constraints. A two-step alternating algorithm is proposed to solve the problem and numerical results demonstrate that our algorithm can solve the optimization problem efficiently. More specifically, loosening the FBL constraint, enlarging the cache size and having a higher transmission power budget at the UAV lead to an improved performance. 
    more » « less