skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Patterns of Gene Family Evolution and Selection Across Daphnia
ABSTRACT Gene family expansion underlies a host of biological innovations across the tree of life. Understanding why specific gene families expand or contract requires comparative genomic investigations clarifying further how species adapt in the wild. This study investigates the gene family change dynamics within several species ofDaphnia, a group of freshwater microcrustaceans that are insightful model systems for evolutionary genetics' research. We employ comparative genomics approaches to understand the forces driving gene evolution and draw upon candidate gene families that change gene numbers acrossDaphnia. Our results suggest that genes related to stress responses and glycoproteins generally expand across taxa, and we investigate evolutionary hypotheses of adaptation that may underpin expansions. Through these analyses, we shed light on the interplay between gene expansions and selection within other ecologically relevant stress response gene families. While we show generalities in gene family turnover in genes related to stress response (i.e., DNA repair mechanisms), most gene family evolution is driven in a species‐specific manner. Additionally, while we show general trends toward positive selection within some expanding gene families, many genes are not under selection, highlighting the complexity of diversification and evolution withinDaphnia. Our research enhances the understanding of individual gene family evolution withinDaphniaand provides a case study of ecologically relevant genes prone to change.  more » « less
Award ID(s):
2021791
PAR ID:
10628498
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
5
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defense receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defense response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance anti-viral immune response while dampening inflammatory signaling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored. 
    more » « less
  2. Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defence receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defence response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance antiviral immune response while dampening inflammatory signalling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored. 
    more » « less
  3. Abstract Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi—the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances. 
    more » « less
  4. ABSTRACT Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research. 
    more » « less
  5. Agashe, Deepa (Ed.)
    Abstract Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence. 
    more » « less