Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper waspPolistes fuscatus—a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps inP. fuscatuscontain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures inP. fuscatus’ recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves. 
                        more » 
                        « less   
                    
                            
                            Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps
                        
                    
    
            Abstract Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750394
- PAR ID:
- 10273532
- Editor(s):
- Agashe, Deepa
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Sulfate-proton co-transporters (SULTRs) mediate sulfate uptake, transport, storage, and assimilation in plants. The SULTR family has historically been classified into four groups (SULTR1-SULTR4), with well-characterized roles for SULTR groups 1, 2, and 4. However, the functions of the large and diverse SULTR3 group remain poorly understood. Here, we present an updated phylogenetic analysis of SULTRs across angiosperms, including multiple early-divergent lineages. Our results suggest that the enigmatic SULTR3 group comprises four distinct subfamilies that predate the emergence of angiosperms, providing a basis for reclassifying the SULTR family into seven subfamilies. This expanded classification is supported by subfamily-specific gene structures and amino acid substitutions in the substrate-binding pocket. Structural modeling identified three serine residues uniquely lining the substrate-binding pocket of SULTR3.4, enabling three hydrogen bonds with the phosphate ion. The data support the proposed neofunctionalization of this subfamily for phosphate allocation within vascular tissues. Transcriptome analysis of Populus tremula × alba revealed divergent tissue expression preferences among SULTR subfamilies and between genome duplicates. We observed partitioned expression in vascular tissues among the four SULTR3 subfamilies, with PtaSULTR3.4a and PtaSULTR3.2a preferentially expressed in primary and secondary xylem, respectively. Gene coexpression analysis revealed coordinated expression of PtaSULTR3.4a with genes involved in phosphate starvation responses and nutrient transport, consistent with a potential role in phosphate homeostasis. In contrast, PtaSULTR3.2a was strongly coexpressed with lignification and one-carbon metabolism genes and their upstream transcription regulators. PtaSULTR3.2a belongs to a eudicot-specific branch of the SULTR3.1 subfamily found only in perennial species, suggesting a specialized role in lignifying tissues. Together, our findings provide a refined phylogenetic framework for the SULTR family and suggest that the expanded SULTR3 subfamilies have undergone neofunctionalization during the evolution of vascular and perennial plants.more » « less
- 
            ABSTRACT Gene family expansion underlies a host of biological innovations across the tree of life. Understanding why specific gene families expand or contract requires comparative genomic investigations clarifying further how species adapt in the wild. This study investigates the gene family change dynamics within several species ofDaphnia, a group of freshwater microcrustaceans that are insightful model systems for evolutionary genetics' research. We employ comparative genomics approaches to understand the forces driving gene evolution and draw upon candidate gene families that change gene numbers acrossDaphnia. Our results suggest that genes related to stress responses and glycoproteins generally expand across taxa, and we investigate evolutionary hypotheses of adaptation that may underpin expansions. Through these analyses, we shed light on the interplay between gene expansions and selection within other ecologically relevant stress response gene families. While we show generalities in gene family turnover in genes related to stress response (i.e., DNA repair mechanisms), most gene family evolution is driven in a species‐specific manner. Additionally, while we show general trends toward positive selection within some expanding gene families, many genes are not under selection, highlighting the complexity of diversification and evolution withinDaphnia. Our research enhances the understanding of individual gene family evolution withinDaphniaand provides a case study of ecologically relevant genes prone to change.more » « less
- 
            The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.more » « less
- 
            ABSTRACT Visual recognition of three-dimensional signals, such as faces, is challenging because the signals appear different from different viewpoints. A flexible but cognitively challenging solution is viewpoint-independent recognition, where receivers identify signals from novel viewing angles. Here, we used same/different concept learning to test viewpoint-independent face recognition in Polistes fuscatus, a wasp that uses facial patterns to individually identify conspecifics. We found that wasps use extrapolation to identify novel views of conspecific faces. For example, wasps identify a pair of pictures of the same wasp as the ‘same’, even if the pictures are taken from different views (e.g. one face 0 deg rotation, one face 60 deg rotation). This result is notable because it provides the first evidence of view-invariant recognition via extrapolation in an invertebrate. The results suggest that viewpoint-independent recognition via extrapolation may be a widespread strategy to facilitate individual face recognition.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    