skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms
Behrstock, Hagen and Sisto classified 3-manifold groups admitting a hierarchically hyperbolic space structure. However, these structures were not always equivariant with respect to the group. In this paper, we classify 3-manifold groups admitting equivariant hierarchically hyperbolic structures. The key component of our proof is that the admissible groups introduced by Croke and Kleiner always admit equivariant hierarchically hyperbolic structures. For non-geometric graph manifolds, this is contrary to a conjecture of Behrstock, Hagen and Sisto and also contrasts with results about CAT(0) cubical structures on these groups. Perhaps surprisingly, our arguments involve the construction of suitable quasimorphisms on the Seifert pieces, in order to construct actions on quasi-lines.  more » « less
Award ID(s):
2103191
PAR ID:
10628504
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Université de Grenoble
Date Published:
Journal Name:
Annales de l'Institut Fourier
Volume:
75
Issue:
2
ISSN:
1777-5310
Page Range / eLocation ID:
769 to 828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The main result of this paper is that any 3-dimensional manifold with a finite group action is equivariantly invertibly homology cobordant to a hyperbolic manifold; this result holds with suitable twisted coefficients as well. The following two consequences motivated this work. First, there are hyperbolic equivariant corks (as defined in previous work of the authors) for a wide class of finite groups. Second, any finite group that acts on a homology 3-sphere also acts on a hyperbolic homology 3-sphere. The theorem has other corollaries, including the existence of infinitely many hyperbolic homology spheres that support free Zp-actions that do not extend over any contractible manifolds, and (from the non-equivariant version of the theorem) infinitely many that bound homology balls but do not bound contractible manifolds. In passing, it is shown that the invertible homology cobordism relation on 3-manifolds is antisymmetric, and thus a partial order. 
    more » « less
  2. We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3 3 –manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text. 
    more » « less
  3. We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3–manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi- convexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. 
    more » « less
  4. In this paper, we establish upper bounds on the length of the shortest conjugator between pairs of infinite order elements in a wide class of groups. We obtain a general result which applies to all hierarchically hyperbolic groups, a class which includes mapping class groups, right-angled Artin groups, Burger–Mozes-type groups, most 3-manifold groups, and many others. In this setting, we establish a linear bound on the length of the shortest conjugator for any pair of conjugate Morse elements. For a subclass of these groups, including, in particular, all virtually compact special groups, we prove a sharper result by obtaining a linear bound on the length of the shortest conjugator between a suitable power of any pair of conjugate infinite order elements. 
    more » « less
  5. Hyperbolic neural networks have been popular in the re- cent past due to their ability to represent hierarchical data sets effectively and efficiently. The challenge in develop- ing these networks lies in the nonlinearity of the embed- ding space namely, the Hyperbolic space. Hyperbolic space is a homogeneous Riemannian manifold of the Lorentz group which is a semi-Riemannian manifold, i.e. a mani- fold equipped with an indefinite metric. Most existing meth- ods (with some exceptions) use local linearization to de- fine a variety of operations paralleling those used in tra- ditional deep neural networks in Euclidean spaces. In this paper, we present a novel fully hyperbolic neural network which uses the concept of projections (embeddings) fol- lowed by an intrinsic aggregation and a nonlinearity all within the hyperbolic space. The novelty here lies in the projection which is designed to project data on to a lower- dimensional embedded hyperbolic space and hence leads to a nested hyperbolic space representation independently useful for dimensionality reduction. The main theoretical contribution is that the proposed embedding is proved to be isometric and equivariant under the Lorentz transforma- tions, which are the natural isometric transformations in hyperbolic spaces. This projection is computationally effi- cient since it can be expressed by simple linear operations, and, due to the aforementioned equivariance property, it al- lows for weight sharing. The nested hyperbolic space rep- resentation is the core component of our network and there- fore, we first compare this representation – independent of the network – with other dimensionality reduction methods such as tangent PCA, principal geodesic analysis (PGA) and HoroPCA. Based on this equivariant embedding, we develop a novel fully hyperbolic graph convolutional neural network architecture to learn the parameters of the projec- tion. Finally, we present experiments demonstrating com- parative performance of our network on several publicly available data sets. 
    more » « less