This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities on a coherent philosophical model that guides theories of change. The project has adopted Amartya Sen’s Development as Freedom or capabilities framework as the organizing philosophy. In this model the freedom for individuals to develop capabilities they value is viewed as both the means and end of development. The overarching goal of the project is then for students to build personalized frameworks based on their value systems which allow them to later address complex, convergent problems. Framework development by individual students is supported in the project through several activities: modifying grading practices to provide detailed feedback on skills that support convergence, eliciting self-narratives from students about their pathways through courses and projects with the goal of developing reflection, and carefully integrating educational software solutions that can reduce some aspects of faculty workload which is hypothesized to enable faculty to focus efforts on integrating convergent projects throughout the curriculum. The poster will present initial results on the interventions to the program including grading, software integration, projects, and narratives. The work presented will also cover an ethnographic study of faculty practices which serves as an early-stage baseline to calibrate longer-term changes. 
                        more » 
                        « less   
                    
                            
                            Approaching Convergence from an Undergraduate Engineering Perspective
                        
                    
    
            This research-to-practice full paper presents and approach to bringing convergence to the undergraduate engineering context. Convergence is the process of integrating a variety of ideas, skills, and methods to create new ideas, skills, and methods in order to address complex, socially relevant challenges like the UN Sustainable Development Goals [1] and the National Academy of Engineering's (NAE) Grand Challenges [2]. In the US, the National Science Foundation (NSF) has been a major driver of convergence related research and has focused on work primarily at the graduate level and beyond. To explore how convergence concepts translate to an undergraduate engineering context this research to practice paper describes a taxonomy that translates convergent knowledge, skills, and mindsets into the domain of undergraduate engineering education. While we do not believe it is reasonable to expect undergraduates to engage with convergence in the same way as graduate students or postdoctoral scholars, we believe that they can develop in areas that will allow them to engage in convergent work later in their careers. This paper first defines convergence and then examines the challenges and opportunities related to developing a student's ability to do convergent work in an undergraduate context. The developed taxonomy outlines the knowledge, skills, mindsets, and structures that support convergent work from the larger research literature, and adapts these to an undergraduate context. The taxonomy is then used to conduct a gap analysis of an undergraduate electrical and computer engineering degree program. This analysis is based on the syllabi. This work was conducted in the context of an electrical and computer engineering department situated in a medium-sized primarily undergraduate liberal arts institution in the mid-Atlantic region. As the challenges and opportunities are similar to but also unique to this institution this work forms a rich case study that can inform similar efforts in other institutions and contexts where a similar gap analysis may be beneficial. The goal of this work is to enable others to analyze an their existing student experience to see what aspects of convergence are currently included. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2022271
- PAR ID:
- 10628559
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-5150-7
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract—Wicked problems, the National Academy of Engineering’s Grand Challenges, the United Nations’ Sustainability Goals, and similar complex, global-scale endeavors fall under the broad umbrella of “convergent” work. Over the past two decades there has been an increase in interest and funding for work in this space. The NSF has two programs focused in this area, Growing Convergence Research and the Convergence Accelerator. Boston University’s College of Engineering recently announced a focus on convergent projects and work. The National Academic of Engineering also has the Grand Challenge Scholars program with over 100 participating schools. The list continues to grow. The broad concept of convergence seems to be quite simple: combine the ideas, skills, and/or methods of multiple disciplines to create something new. More specific definitions vary and while the interest in convergence and convergent problems continues to increase, there is no easily operational definition of convergence. This is especially true with respect to undergraduate-level education where students have limited experience and knowledge to carry out such efforts. To better understand the variation that exists within the literature on convergence we conducted a systematic review to explore how convergence is defined in scholarly literature. We have identified a small number of categories within the definition space and conducted a thematic analysis of the aspects of each. The results show that there is a fairly consistent focus on the work being socially-relevant and on creating something new such as an idea, method, product, or process to address desired needs. Additionally, doing convergent work requires the integration of aspects of multiple disciplines and is conducted by diverse teams. Lastly, the disciplinary backgrounds of those teams almost always includes the natural and biological sciences with a subset the following disciplines: information or computing sciences, engineering, social sciences, and humanities. While there is some consistency in the definition, there also seems to be space for some variation which leaves for some level of choice in the definition.more » « less
- 
            In this paper we explore the ability of educational frameworks focused on developing the entrepreneurial mindset to be used to develop students’ abilities to approach convergent problems. While there is not a single widely accepted definition of convergence, there are some general aspects noted by the NSF including: socially relevant, multidisciplinary, complex, and not being adequately addressed by current methods and practices. Convergent problems require existing disciplines to collaborate to create new knowledge, skills, and approaches in order to be appropriately addressed. We believe that there are aspects of the entrepreneurial mindset and the learning of it that can support the development of knowledge, skills, and attitudes to approach convergent problems. This is relevant because most work on convergent problems happens at the graduate level and beyond and our interest is to create experiences for undergraduates that prepare them to embark on this work after graduation. This study maps entrepreneurial mindset learning (EML) onto a framework based on prior work on convergence to identify the aspects of EML that directly support convergence work or preparation for convergence work. The existing dataset of KEEN cards is used as a proxy for existing work in this space, as well. If existing work in EML can address some or all of the knowledge, skills, and attitudes needed for convergent problem solving then engineering educators have a set of tools and practices that can contribute towards creating engineers who are better prepared to work on the hard problems of tomorrow.more » « less
- 
            Early involvement in engineering research has proven to be a highly effective way to inspire undergraduate students to pursue advanced studies or research-intensive careers. By engaging students in real-world, hands-on research projects, they not only sharpen their problem-solving skills but also develop the intellectual independence needed to tackle complex engineering challenges. These benefits are amplified when the research experience is multidisciplinary, allowing students to engage with topics beyond the confines of their chosen major. Moreover, participation in a collaborative cohort—where continual interactions and shared learning experiences occur—helps foster a sense of community and shared purpose, further enhancing the learning process. This paper presents the outcomes and impacts of a unique undergraduate research program conducted collaboratively between Oklahoma State University, Stillwater, and the University of Alabama in Huntsville. What sets this program apart is its fusion of engineering and engineering technology disciplines, its blend of applied and fundamental research, and its focus on multidisciplinary topics such as human safety, fire protection technology, mechanical engineering technology, electrical engineering, and artificial intelligence. The program engages students from sophomore to senior levels, offering them a chance to explore various research methodologies and work on projects that span multiple fields of engineering. This exposure helps them cultivate a comprehensive understanding of engineering systems and their real-world applications. In this paper, we will delve into the structure and activities of the Research Experiences for Undergraduates (REU) program, discussing its various components as well as the educational and research outcomes it has produced. A central theme of the program is its focus on multidisciplinary research, which ranges from technical fields such as fire protection and mechanical engineering technology to more advanced areas like electrical engineering and artificial intelligence. This breadth of topics ensures that students are equipped with a wide range of skills, from analytical problem-solving to creative thinking, as they learn to approach engineering challenges from multiple perspectives. Additionally, the program’s emphasis on cohort-building activities plays a crucial role in shaping the students’ experiences. By promoting collaboration among students from different disciplines, the program encourages the cross-pollination of ideas, mutual learning, and the development of soft skills such as communication, teamwork, and leadership. The interactions fostered within the cohort help students build a network of peers who share similar academic and career aspirations, strengthening their commitment to research and professional development. The paper will also present the results of both formative and summative assessments of the program, highlighting its impacts on student learning, skill development, and long-term career trajectories. By examining these outcomes, we demonstrate how this collaborative and multidisciplinary research program has successfully nurtured the next generation of independent researchers and engineering leaders, equipping them to meet the challenges of an increasingly complex and interconnected world.more » « less
- 
            Undergraduate and graduate students need professional development skills to form expertise applicable to any job or future career. Mentoring is a way that students can learn how to engage in professional development. Likewise, students can learn professional development skills from mentors who they look to for expanding their knowledge base. To help address the needs of undergraduate and graduate students in engineering, the principal investigator developed and facilitated the Mentoring and Professional Development in Engineering Education (MPD-E2) Program. For this study, we examined the program’s general functions and elements using session notes and discussion of our observations. The guiding research question for this study is: what are some elements of a mentoring and professional development program that students value? In this work, we present details about the elements of the program that support student development and insights about potential future opportunities for these types of programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    