skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 6, 2026

Title: X-Ray Constraints on Wandering Black Holes in Stripped Galaxy Nuclei in the Halo of NGC 5128
Abstract A subset of galaxies have dense nuclei, and when these galaxies are accreted and tidally stripped, the nuclei can masquerade as globular clusters in the halos of large galaxies. If these nuclei contain massive central black holes, some may accrete gas and become observable as active galactic nuclei. Previous studies have found that candidate stripped nuclei rarely host luminous X-ray sources, but these studies were typically restricted to both the most massive candidate nuclei and the most luminous X-ray sources. Here we use new and archival Chandra and XMM-Newton data to search for X-ray emission in a near-complete sample of massive globular clusters and candidate stripped nuclei in the nearest accessible elliptical galaxy, NGC 5128. This sample has the unique advantage that the candidate stripped nuclei are identified dynamically via elevated mass-to-light ratios (M/LV). Our central result is that 5/22 ( 2 3 6 + 11 %) of the candidate stripped nuclei have X-ray sources down to a typical limit ofLX∼ 5 × 1036erg s−1, a fraction lower than or comparable to that among massive clusters with normalM/LV(16/41; 3 9 7 + 8 %). Hence we confirm and extend the result that nearly all X-ray sources in stripped nuclei are likely to be X-ray binaries rather than active galactic nuclei. If the candidate stripped nuclei have black holes of typical masses ∼2 × 105Mneeded to explain their elevatedM/LV, then they have typical Eddington ratios of ≲ 2 × 10−6. This suggests that it will be challenging to conduct an accretion census of wandering black holes around even nearby galaxies.  more » « less
Award ID(s):
1813708
PAR ID:
10628580
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 . 914 ± 0 . 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M, at least 10 times lower than its host galaxy’s central black hole mass (≳108M). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass. 
    more » « less
  2. Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of σ rv = 2.5 0.8 + 1.3 km s−1, which results in a dynamical mass of M 1 / 2 ( r h ) = 8 4 + 12 × 10 5 Mand a mass-to-light ratio ofM/LV= 440 250 + 650 M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities ( ρ 1 / 2 3.5 2.1 + 5.7 × 10 7 Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies. 
    more » « less
  3. Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with log ( L X /erg s 1 ) = 44.71 0.12 + 0.08 and heavily obscured with log ( N H / cm 2 ) = 23.43 0.13 + 0.09 . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. 
    more » « less
  4. Abstract A fundamental question in galaxy and black hole evolution remains how galaxies and their supermassive black holes have evolved together over cosmic time. Specifically, it is still unclear how the position of X-ray active galactic nucleus (AGN) host galaxies with respect to the star-forming main sequence (MS) may change with the X-ray luminosity (LX) of the AGN or the stellar mass (M) of the host galaxy. We use data from the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) to probe this issue. XMM-SERVS is covered by the largest medium-depth X-ray survey (with superb supporting multiwavelength data) and thus contains the largest sample to date for study. To ensure consistency, we locally derive the MS from a large reference galaxy sample. In our analysis, we demonstrate that the turnover of the galaxy MS does not allow reliable conclusions to be drawn for high-mass AGNs, and we establish a robust safe regime where the results do not depend upon the choice of MS definition. Under this framework, our results indicate that less massive AGN host galaxies ( log M 9.5 10.5 M ) generally possess enhanced star formation rates compared to their normal-galaxy counterparts while the more massive AGN host galaxies ( log M 10.5 11.5 M ) lie on or below the star-forming MS. Further, we propose an empirical model for how the placement of an AGN with respect to the MS (SFRnorm) evolves as a function of bothMandLX
    more » « less
  5. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less