skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 19, 2026

Title: Data augmentation via diffusion model to enhance AI fairness
IntroductionAI fairness seeks to improve the transparency and explainability of AI systems by ensuring that their outcomes genuinely reflect the best interests of users. Data augmentation, which involves generating synthetic data from existing datasets, has gained significant attention as a solution to data scarcity. In particular, diffusion models have become a powerful technique for generating synthetic data, especially in fields like computer vision. MethodsThis paper explores the potential of diffusion models to generate synthetic tabular data to improve AI fairness. The Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM), a diffusion model adaptable to any tabular dataset and capable of handling various feature types, was utilized with different amounts of generated data for data augmentation. Additionally, reweighting samples from AIF360 was employed to further enhance AI fairness. Five traditional machine learning models—Decision Tree (DT), Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF)—were used to validate the proposed approach. Results and discussionExperimental results demonstrate that the synthetic data generated by Tab-DDPM improves fairness in binary classification.  more » « less
Award ID(s):
2323419
PAR ID:
10629220
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
8
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biased AI models result in unfair decisions. In response, a number of algorithmic solutions have been engineered to mitigate bias, among which the Synthetic Minority Oversampling Technique (SMOTE) has been studied, to an extent. Although the SMOTE technique and its variants have great potentials to help improve fairness, there is little theoretical justification for its success. In addition, formal error and fairness bounds are not clearly given. This paper attempts to address both issues. We prove and demonstrate that synthetic data generated by oversampling underrepresented groups can mitigate algorithmic bias in AI models, while keeping the predictive errors bounded. We further compare this technique to the existing state-of-the-art fair AI techniques on five datasets using a variety of fairness metrics. We show that this approach can effectively improve fairness even when there is a significant amount of label and selection bias, regardless of the baseline AI algorithm. 
    more » « less
  2. The proliferation of Artificial Intelligence (AI) models such as Generative Adversarial Networks (GANs) has shown impressive success in image synthesis. Artificial GAN-based synthesized images have been widely spread over the Internet with the advancement in generating naturalistic and photo-realistic images. This might have the ability to improve content and media; however, it also constitutes a threat with regard to legitimacy, authenticity, and security. Moreover, implementing an automated system that is able to detect and recognize GAN-generated images is significant for image synthesis models as an evaluation tool, regardless of the input modality. To this end, we propose a framework for reliably detecting AI-generated images from real ones through Convolutional Neural Networks (CNNs). First, GAN-generated images were collected based on different tasks and different architectures to help with the generalization. Then, transfer learning was applied. Finally, several Class Activation Maps (CAM) were integrated to determine the discriminative regions that guided the classification model in its decision. Our approach achieved 100% on our dataset, i.e., Real or Synthetic Images (RSI), and a superior performance on other datasets and configurations in terms of its accuracy. Hence, it can be used as an evaluation tool in image generation. Our best detector was a pre-trained EfficientNetB4 fine-tuned on our dataset with a batch size of 64 and an initial learning rate of 0.001 for 20 epochs. Adam was used as an optimizer, and learning rate reduction along with data augmentation were incorporated. 
    more » « less
  3. Abstract BackgroundWhile most health-care providers now use electronic health records (EHRs) to document clinical care, many still treat them as digital versions of paper records. As a result, documentation often remains unstructured, with free-text entries in progress notes. This limits the potential for secondary use and analysis, as machine-learning and data analysis algorithms are more effective with structured data. ObjectiveThis study aims to use advanced artificial intelligence (AI) and natural language processing (NLP) techniques to improve diagnostic information extraction from clinical notes in a periodontal use case. By automating this process, the study seeks to reduce missing data in dental records and minimize the need for extensive manual annotation, a long-standing barrier to widespread NLP deployment in dental data extraction. Materials and MethodsThis research utilizes large language models (LLMs), specifically Generative Pretrained Transformer 4, to generate synthetic medical notes for fine-tuning a RoBERTa model. This model was trained to better interpret and process dental language, with particular attention to periodontal diagnoses. Model performance was evaluated by manually reviewing 360 clinical notes randomly selected from each of the participating site’s dataset. ResultsThe results demonstrated high accuracy of periodontal diagnosis data extraction, with the sites 1 and 2 achieving a weighted average score of 0.97-0.98. This performance held for all dimensions of periodontal diagnosis in terms of stage, grade, and extent. DiscussionSynthetic data effectively reduced manual annotation needs while preserving model quality. Generalizability across institutions suggests viability for broader adoption, though future work is needed to improve contextual understanding. ConclusionThe study highlights the potential transformative impact of AI and NLP on health-care research. Most clinical documentation (40%-80%) is free text. Scaling our method could enhance clinical data reuse. 
    more » « less
  4. Abstract An ensemble postprocessing method is developed to improve the probabilistic forecasts of extreme precipitation events across the conterminous United States (CONUS). The method combines a 3D vision transformer (ViT) for bias correction with a latent diffusion model (LDM), a generative artificial intelligence (AI) method, to postprocess 6-hourly precipitation ensemble forecasts and produce an enlarged generative ensemble that contains spatiotemporally consistent precipitation trajectories. These trajectories are expected to improve the characterization of extreme precipitation events and offer skillful multiday accumulated and 6-hourly precipitation guidance. The method is tested using the Global Ensemble Forecast System (GEFS) precipitation forecasts out to day 6 and is verified against the Climatology-Calibrated Precipitation Analysis (CCPA) data. Verification results indicate that the method generated skillful ensemble members with improved continuous ranked probabilistic skill scores (CRPSSs) and Brier skill scores (BSSs) over the raw operational GEFS and a multivariate statistical postprocessing baseline. It showed skillful and reliable probabilities for events at extreme precipitation thresholds. Explainability studies were further conducted, which revealed the decision-making process of the method and confirmed its effectiveness on ensemble member generation. This work introduces a novel, generative AI–based approach to address the limitation of small numerical ensembles and the need for larger ensembles to identify extreme precipitation events. Significance StatementWe use a new artificial intelligence (AI) technique to improve extreme precipitation forecasts from a numerical weather prediction ensemble, generating more scenarios that better characterize extreme precipitation events. This AI-generated ensemble improved the accuracy of precipitation forecasts and probabilistic warnings for extreme precipitation events. The study explores AI methods to generate precipitation forecasts and explains the decision-making mechanisms of such AI techniques to prove their effectiveness. 
    more » « less
  5. Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related datasets: SmartFallMM, UniMib, and K-Fall. We apply three conventional time-series augmentation techniques, a Diffusion-based generative AI method, and a novel approach that extracts fall segments from public video footage of older adults. A key innovation of our work is the exploration of two distinct approaches: video-based pose estimation to extract fall segments from public footage, and Diffusion models to generate synthetic fall signals. Both methods independently enable the creation of highly realistic and diverse synthetic data tailored to specific sensor placements. To our knowledge, these approaches and especially their application in fall detection represent rarely explored directions in this research area. To assess the quality of the synthetic data, we use quantitative metrics, including the Fréchet Inception Distance (FID), Discriminative Score, Predictive Score, Jensen–Shannon Divergence (JSD), and Kolmogorov–Smirnov (KS) test, and visually inspect temporal patterns for structural realism. We observe that Diffusion-based synthesis produces the most realistic and distributionally aligned fall data. To further evaluate the impact of synthetic data, we train a long short-term memory (LSTM) model offline and test it in real time using the SmartFall App. Incorporating Diffusion-based synthetic data improves the offline F1-score by 7–10% and boosts real-time fall detection performance by 24%, confirming its value in enhancing model robustness and applicability in real-world settings. 
    more » « less