skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the Circumstellar Environment of the Highly Luminous Type IIn Supernova ASASSN-14il
Abstract We present long-term photometric and spectroscopic studies of circumstellar material (CSM)–ejecta interacting supernova (SN) ASASSN-14il in the galaxy PGC 3093694. The SN reaches a peakr-band magnitude of ∼−20.3 ± 0.2 mag, rivaling SN 2006tf and SN 2010jl. The multiband and the pseudo-bolometric lightcurves show a plateau lasting ∼50 days. Semi-analytical CSM interaction models can match the high luminosity and decline rates of the lightcurves but fail to faithfully represent the plateau region and the bumps in the lightcurves. The spectral evolution resembles a typical Type IIn SN dominated by CSM interaction, showing blue continuum and narrow Balmer lines. The lines are dominated by electron scattering at early epochs. The signatures of the underlying ejecta are visible as the broad component in the Hαprofile from as early as day 50, hinting at asymmetry in the CSM. A narrow component is persistent throughout the evolution. The SN shows remarkable photometric and spectroscopic similarity with SN 2015da. However, the different polarization in ASASSN-14il compared to SN 2015da suggests an alternative viewing angle. The late-time blueshift in the Hαprofile supports dust formation in the post-shock CSM or ejecta. The mass-loss rate of 2–7Myr−1suggests a luminous blue variable progenitor in an eruptive phase for ASASSN-14il.  more » « less
Award ID(s):
2407565
PAR ID:
10629259
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
86
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with an M ̇ ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin. 
    more » « less
  2. Abstract We present high-cadence photometric and spectroscopic observations of supernova (SN) 2024ggi, a Type II SN with flash spectroscopy features, which exploded in the nearby galaxy NGC 3621 at ∼7 Mpc. The light-curve evolution over the first 30 hr can be fit by two power-law indices with a break after 22 hr, rising fromMV≈ −12.95 mag at +0.66 day toMV≈ −17.91 mag after 7 days. In addition, the densely sampled color curve shows a strong blueward evolution over the first few days and then behaves as a normal SN II with a redward evolution as the ejecta cool. Such deviations could be due to interaction with circumstellar material (CSM). Early high- and low-resolution spectra clearly show high-ionization flash features from the first spectrum to +3.42 days after the explosion. From the high-resolution spectra, we calculate the CSM velocity to be 37 ± 4 km s−1. We also see the line strength evolve rapidly from 1.22 to 1.49 days in the earliest high-resolution spectra. Comparison of the low-resolution spectra with CMFGEN models suggests that the pre-explosion mass-loss rate of SN 2024ggi falls in the range of 10−3–10−2Myr−1, which is similar to that derived for SN 2023ixf. However, the rapid temporal evolution of the narrow lines in the spectra of SN 2024ggi (RCSM∼ 2.7 × 1014cm) could indicate a smaller spatial extent of the CSM than in SN 2023ixf (RCSM∼ 5.4 × 1014cm), which in turn implies a lower total CSM mass for SN 2024ggi. 
    more » « less
  3. ABSTRACT We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients. 
    more » « less
  4. Abstract We present a comprehensive multi-epoch photometric and spectroscopic study of SN 2024bch, a nearby (19.9 Mpc) Type II supernova (SN) with prominent early high-ionization emission lines. Optical spectra from 2.8 days after the estimated explosion reveal narrow lines of H i, He ii, C iv, and N ivthat disappear by day 6. High-cadence photometry from the ground and Transiting Exoplanet Survey Satellite show that the SN brightened quickly and reached a peakMV ~ −17.8 mag within a week of explosion, and late-time photometry suggests a56Ni mass of 0.050M. High-resolution spectra from days 7.9 and 43 trace the unshocked circumstellar medium (CSM) and indicate a wind velocity of 30–40 km s−1, a value consistent with a red supergiant (RSG) progenitor. Comparisons between models and the early spectra suggest a pre-SN mass-loss rate of M ̇ ~ 1 0 3 1 0 2 M yr 1 , which is too high to be explained by quiescent mass loss from RSGs, but is consistent with some recent measurements of similar SNe. Persistent blueshifted H iand [O i] emission lines seen in the optical and near-IR spectra could be produced by asymmetries in the SN ejecta, while the multicomponent Hαmay indicate continued interaction with an asymmetric CSM well into the nebular phase. SN 2024bch provides another clue to the complex environments and mass-loss histories around massive stars. 
    more » « less
  5. We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼ 500 Re progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130 ± 0.026 Me of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta. 
    more » « less