skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 2, 2025

Title: Investigating the Effects of Extended Equilibrium Crystallization on a Cooling Lunar Magma Ocean
We investigate the implications of prolonging the equilibrium crystallization (EQX) stage of lunar magma ocean (LMO) solidification beyond the oft-modeled 50% volume solids, to 60%. Most models of two-stage LMO crystallization halt the EQX phase once 50% of a molten Moon (post-core formation) solidifies, after which the remaining 50% of the LMO solidifies via fractional crystallization (FRX). We quantitatively show through a simple scaling analysis that compares crystal settling velocity to vertical convective velocity that the early EQX regime can operate up to (and possible even slightly beyond) 60% volume solids. Phases that stabilize during the EQX and FRX regimes are then computed using Perple_X (thermodynamic calculator) along with the hp633ver database and associated activity-composition relations for solid solutions, and consider an adiabat that remains between the liquidus and solidus. Early results show two key findings: 1) only low volumes (~2%) of ilmenite form over ~50-km thick upper mantle layers for both 50% and 60% EQX regimes, suggesting that a mantle overturn may have been sluggish and/or limited in depth (dense ilmenite is thought to have been a critical driver of late-stage mantle mixing); and 2) contrary to most published two-stage LMO models, a refractory-enriched (i.e. high Al2O3) bulk silicate Moon is not required to produce garnet in the lunar mantle, assuming an Earth-like bulk silicate Moon composition with an alumina content of ~4 wt.%. To complement and test these numerical phase equilibria model results, a series of piston-cylinder experiments is underway that simulate the pressures and temperatures experienced by an FeO+TiO2-rich residual LMO in order to assess the volume and distribution of ilmenite produced during LMO solidification. These results are compared to those of the numerical phase equilibria models. Despite the model-dependent nature of these results, they provide a unique insight into potential LMO crystallization that has not been previously considered in the literature.  more » « less
Award ID(s):
2151038
PAR ID:
10629359
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Location:
Washington DC
Sponsoring Org:
National Science Foundation
More Like this
  1. Moonforming impact. During this period, the lunar magma ocean (LMO) lost most of its heat through early vigorous convection, crystallizing and forming an initial cumulate stratigraphy through, potentially, robust equilibrium crystallization followed by fractional crystallization once the LMO became sufficiently viscous. This rheological transition is estimated to have occurred at 50 % to 60 % LMO solidification, and although the petrological effects of the regime switch have been frequently investigated at the lower value, such effects at the upper limit have not been formally examined until now. Given this scenario, we present two new internally consistent, high-resolution models that simulate the solidification of a deep LMO of Earth-like bulk silicate composition at both rheological transition values, focusing on the petrological characteristics of the evolving mantle and crust. The results suggest that increasing the volume of early suspended solids from the oft-examined 50 % to 60 % may lead to non-trivial differences. The appearance of minor mantle garnet without the need to invoke a refractory-element enriched bulk silicate Moon composition, a bulk mantle relatively richer in orthopyroxene than olivine, a lower density upper mantle, and a thinner crust are shown to change systematically between the two models, favoring prolonged early crystal suspension. In addition, we show that late-stage, silica-enriched melts may not have sufficient density to permit plagioclase to continue building a floatation crust and that plagioclase likely sinks or stagnates. As the ability of a lunar magma ocean to suspend crystals is directly tied to the Moon’s early thermal state, the degree of early LMO convection – and the immediate Solar System environment that drives it – require as much consideration in LMO models as more well-investigated parameters such as bulk silicate Moon composition and initial magma ocean depth. 
    more » « less
  2. Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon’s South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My. Here, we show that the Moon achieved >99% crystallization at 4,429 ± 76 Ma, indicating a lunar formation age of ~4,450 Ma or possibly older. Using the176Lu–176Hf decay system (t1/2= 37 Gy), we found that the initial176Hf/177Hf ratios of lunar zircons with varied U–Pb ages are consistent with their crystallization from a KREEP-rich reservoir with a consistently low176Lu/177Hf ratio of 0.0167 that emerged ~140 My after solar system formation. The previously proposed younger model age of ~4.33 Ga for the source of mare basalts (240 My after solar system formation) might reflect the timing of a large impact. Our results demonstrate that lunar magma ocean crystallization took place while the Moon was still battered by planetary embryos and planetesimals leftover from the main stage of planetary accretion. The study of Lu–Hf model ages for samples brought back from the South Pole-Aitken basin will help to assess the lateral continuity of KREEP and further understand its significance in the early history of the Moon. 
    more » « less
  3. Abstract Mineral/melt partition coefficients have been widely used to provide insights into magmatic processes. Olivine is one of the most abundant and important minerals in the lunar mantle and mare basalts. Yet, no systematic olivine/melt partitioning data are available for lunar conditions. We report trace element partition data between host mineral olivine and its melt inclusions in lunar basalts. Equilibrium is evaluated using the Fe-Mg exchange coefficient, leading to the choice of melt inclusion-host olivine pairs in lunar basalts 12040, 12009, 15016, 15647, and 74235. Partition coefficients of 21 elements (Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Y, Zr, Nb, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were measured. Except for Li, V, and Cr, these elements show no significant difference in olivine-melt partitioning compared to the data for terrestrial samples. The partition coefficient of Li between olivine and melt in some lunar basalts with low Mg# (Mg# < 0.75 in olivine, or < ~0.5 in melt) is higher than published data for terrestrial samples, which is attributed to the dependence of DLi on Mg# and the lack of literature DLi data with low Mg#. The partition coefficient of V in lunar basalts is measured to be 0.17 to 0.74, significantly higher than that in terrestrial basalts (0.003 to 0.21), which can be explained by the lower oxygen fugacity in lunar basalts. The significantly higher DV can explain why V is less enriched in evolved lunar basalts than terrestrial basalts. The partition coefficient of Cr between olivine and basalt melt in the Moon is 0.11 to 0.62, which is lower than those in terrestrial settings by a factor of ~2. This is surprising because previous authors showed that Cr partition coefficient is independent of fO2. A quasi-thermodynamically based model is developed to correlate Cr partition coefficient to olivine and melt composition and fO2. The lower Cr partition coefficient between olivine and basalt in the Moon can lead to more Cr enrichment in the lunar magma ocean, as well as more Cr enrichment in mantle-derived basalts in the Moon. Hence, even though Cr is typically a compatible element in terrestrial basalts, it is moderately incompatible in primitive lunar basalts, with a similar degree of incompatibility as V based on partition coefficients in this work, as also evidenced by the relatively constant V/Cr ratio of 0.039 ± 0.011 in lunar basalts. The confirmation of constant V/Cr ratio is important for constraining concentrations of Cr (slightly volatile and siderophile) and V (slightly siderophile) in the bulk silicate Moon. 
    more » « less
  4. Abstract Earth's accretion was highly energetic and likely involved multiple global melting events. Following the Moon‐forming giant impact, extensive mantle melting and the separation of solids and melts under deep mantle pressures likely produced a basal magma ocean (BMO) beneath the solidified mantle. The presence and evolution of the BMO have been proposed to explain key geophysical and geochemical features of the lowermost mantle. Understanding the evolution of the BMO is crucial for testing these hypotheses, but its interaction with the core presents a significant challenge, as the mechanism of this exchange remains unclear. In this study, we develop a theoretical framework to assess the regime of BMO‐core exchange based on the compositions of the BMO and the core. We propose that during solidification, the BMO may evolve into a regime where the reaction at the BMO‐core interface drives compositional convection in liquids on both sides, if the core has a high enough Si content (–, under the assumption that the O content is –). In this scenario, the BMO‐core exchange would be much more efficient than previously estimated, buffering the tendency of FeO enrichment during crystallization and shortening the lifetime of the BMO. 
    more » « less
  5. Abstract Earth’s habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth’s late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth. 
    more » « less