Labor platform scams are an opportunity to integrate scholarship about governance across social media and labor platforms. Labor platforms have borrowed governance mechanisms from social media to cultivate trust among users and remove problematic content. However, while these platforms may share governance strategies, labor platforms mediate employment relationships between workers and clients with different amounts of power. Based on a multistakeholder ethnography of carework labor platforms, online careworker forums, and interviews, this study describes scams on carework labor platforms. Labor platforms narrate workers into the role of technology consumers, constricting their own obligations to workers. Workers’ explanations of scams vary, with some contesting and others aligning with platform narratives. Some workers seek support in online forums, which remediate the harm of scams for some but also enroll workers in unpaid labor. These scams challenge the assumption of antagonism between the interests of workers and platform companies and highlight the consumerization of work.
more »
« less
Toward Governance Best Practices for Open Educational Resources
Open educational resources (OER) constitute a form of digital media that have received growing interest and adoption. Infrastructures are becoming more widely available to support OER authorship and adaptation. However, this article argues that infrastructures for the ongoing governance of OER have been lacking, despite the medium’s possibilities as “evolutionary media.” The article provides a review of existing literature on OER and their governance, in conversation with the governance of other kinds of software commons. It then offers an auto-ethnographic reflection on the authors’ experience with the challenges of OER maintenance in the context of a specific textbook on social media, and the resulting need for taking governance seriously. Finally, the article proposes strategies for improving support for OER governance through collaborative processes among their stakeholders.
more »
« less
- PAR ID:
- 10629487
- Publisher / Repository:
- Association of Library and Information Science Education (ALISE)
- Date Published:
- Journal Name:
- Proceedings of the ALISE Annual Conference
- ISSN:
- 2573-2269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Designing cost‐efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal–air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe‐based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec−1, achieved at a current density of 10 mA cm−2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.more » « less
-
null (Ed.)Nickel nitride (Ni 3 N) is known as one of the promising precatalysts for the electrochemical oxygen evolution reaction (OER) under alkaline conditions. Due to its relatively low oxidation resistance, Ni 3 N is electrochemically self-oxidized into nickel oxides/oxyhydroxides (electroactive sites) during the OER. However, we lack a full understanding of the effects of Ni 3 N self-oxidation and Fe impurity incorporation into Ni 3 N from electrolyte towards OER activity. Here, we report on our examination of the compositional and structural transformation of Ni 3 N precatalyst layers on Ni foams (Ni 3 N/Ni foam) during extended periods of OER testing in Fe-purified and unpurified KOH media using both a standard three-electrode cell and a flow cell, and discuss their electrocatalytic properties. After the OER tests in both KOH media, the Ni 3 N surfaces were converted into amorphous, nano-porous nickel oxide/(oxy)hydroxide surfaces. In the Fe-purified electrolyte, a decrease in OER activity was confirmed after the OER test because of the formation of pure NiOOH with low OER activity and electrical conductivity. Conversely, in the unpurified electrolyte, a continuous increase in OER activity was observed over the OER testing, which may have resulted from the Fe incorporation into the self-oxidation-formed NiOOH. Our experimental findings revealed that Fe impurities play an essential role in obtaining notable OER activity using the Ni 3 N precatalyst. Additionally, our Ni 3 N/Ni foam electrode exhibited a low OER overpotential of 262 mV to reach a geometric current density of 10 mA cm geo −2 in a flow cell with unpurified electrolyte.more » « less
-
Abstract This paper describes the development of mixed B-site pyrochlore Y2MnRuO7electrocatalyst for oxygen evolution reaction (OER) in acidic media, a challenge for the development of low-temperature electrolyzer for green hydrogen production. Recently, several theories have been developed to understand the reaction mechanism for OER, though there is an uncertainty in most of the cases, due to the complex surface structures. Several key factors such as lattice oxygen, defect, electronic structure, oxidation state, hydroxyl group and conductivity were identified and shown to be important to the OER activity. The contribution of each factor to the performance however is often not well understood, limiting their impact in guiding the design of OER electrocatalysts. In this work, we showed mixed B-site pyrochlore Y2MnRuO7catalyst exhibits 14 times higher turnover frequency (TOF) than RuO2while maintaining a low overpotential of ~ 300 mV for the entire testing period of 24 h in acidic electrolyte. X-ray photoelectron spectroscopy (XPS) analysis reveals that this B-site mixed pyrochlore Y2MnRuO7has a higher oxidation state of Ru than those of Y2Ru2O7, which could be crucial for improving OER performance as the broadened and lowered Ru 4d band resulted from the B-site substitution by Mn is beneficial to the OER kinetics.more » « less
-
Abstract Developing low‐cost, high‐performance electro‐catalysts is essential for large‐scale application of electrochemical energy devices. In this article, reported are the findings in understanding and controlling oxygen defects in PrBa0.5Sr0.5Co1.5Fe0.5O5+δ(PBSCF) for significantly enhancing the rate of oxygen evolution reaction (OER) are reported. Utilizing surface‐sensitive characterization techniques and first‐principle calculations, it is found that excessive oxygen vacancies promote OH−affiliation and lower the theoretical energy for the formation of O* on the surface, thus greatly facilitating the OER kinetics. On the other hand, however, oxygen vacancies also increase the energy band gap and lower the O 2pband center of PBSCF, which may hinder OER kinetics. Still, careful tuning of these competing effects has resulted in enhanced OER activity for PBSCF with oxygen defects. This work also demonstrates that oxygen defects generated by different techniques have very different characteristics, resulting in different impacts on the activity of electrodes. In particular, PBSCF nanotubes after electrochemical reduction exhibit outstanding OER activity compared with the recently reported perovskite‐based catalysts.more » « less
An official website of the United States government

