skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 2, 2026

Title: One-shot manipulation strategy learning by making contact analogies.
We present a novel approach, MAGIC (manipulation analogies for generalizable intelligent contacts), for one-shot learning of manipulation strategies with fast and extensive generalization to novel objects. By leveraging a reference action trajectory, MAGIC effectively identifies similar contact points and sequences of actions on novel objects to replicate a demonstrated strategy, such as using different hooks to retrieve distant objects of different shapes and sizes. Our method is based on a twostage contact-point matching process that combines global shape matching using pretrained neural features with local curvature analysis to ensure precise and physically plausible contact points. We experiment with three tasks including scooping, hanging, and hooking objects. MAGIC demonstrates superior performance over existing methods, achieving significant improvements in runtime speed and generalization to different object categories. Website: https://magic-2024.github.io/.  more » « less
Award ID(s):
2214177
PAR ID:
10629488
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE International Conference on Robotics and Automation
Date Published:
Journal Name:
Proceedings IEEE International Conference on Robotics and Automation
ISSN:
1050-4729
Format(s):
Medium: X
Location:
Atlanta, Georgia
Sponsoring Org:
National Science Foundation
More Like this
  1. Human-robot collaboration systems benefit from recognizing people’s intentions. This capability is especially useful for collaborative manipulation applications, in which users operate robot arms to manipulate objects. For collaborative manipulation, systems can determine users’ intentions by tracking eye gaze and identifying gaze fixations on particular objects in the scene (i.e., semantic gaze labeling). Translating 2D fixation locations (from eye trackers) into 3D fixation locations (in the real world) is a technical challenge. One approach is to assign each fixation to the object closest to it. However, calibration drift, head motion, and the extra dimension required for real-world interactions make this position matching approach inaccurate. In this work, we introduce velocity features that compare the relative motion between subsequent gaze fixations and a finite set of known points and assign fixation position to one of those known points. We validate our approach on synthetic data to demonstrate that classifying using velocity features is more robust than a position matching approach. In addition, we show that a classifier using velocity features improves semantic labeling on a real-world dataset of human-robot assistive manipulation interactions. 
    more » « less
  2. Human-robot collaboration systems benefit from recognizing people’s intentions. This capability is especially useful for collaborative manipulation applications, in which users operate robot arms to manipulate objects. For collaborative manipulation, systems can determine users’ intentions by tracking eye gaze and identifying gaze fixations on particular objects in the scene (i.e., semantic gaze labeling). Translating 2D fixation locations (from eye trackers) into 3D fixation locations (in the real world) is a technical challenge. One approach is to assign each fixation to the object closest to it. However, calibration drift, head motion, and the extra dimension required for real-world interactions make this position matching approach inaccurate. In this work, we introduce velocity features that compare the relative motion between subsequent gaze fixations and a nite set of known points and assign fixation position to one of those known points. We validate our approach on synthetic data to demonstrate that classifying using velocity features is more robust than a position matching approach. In addition, we show that a classifier using velocity features improves semantic labeling on a real-world dataset of human-robot assistive manipulation interactions. 
    more » « less
  3. Autonomous systems that efficiently utilize tools can assist humans in completing many common tasks such as cooking and cleaning. However, current systems fall short of matching human-level of intelligence in terms of adapting to novel tools. Prior works based on affordance often make strong assumptions about the environments and cannot scale to more complex, contact-rich tasks. In this work, we tackle this challenge and explore how agents can learn to use previously unseen tools to manipulate deformable objects. We propose to learn a generative model of the tool-use trajectories as a sequence of tool point clouds, which generalizes to different tool shapes. Given any novel tool, we first generate a tool-use trajectory and then optimize the sequence of tool poses to align with the generated trajectory. We train a single model on four different challenging deformable object manipulation tasks, using demonstration data from only one tool per task. The model generalizes to various novel tools, significantly outperforming baselines. We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human. 
    more » « less
  4. We tackle the novel problem of predicting 3D hand motion and contact maps (or Interaction Trajectories) given a single RGB view, action text, and a 3D contact point on the object as input. Our approach consists of (1) Interaction Codebook: a VQVAE model to learn a latent codebook of hand poses and contact points, effectively tokenizing interaction trajectories, (2) Interaction Predictor: a transformer-decoder module to predict the interaction trajectory from test time inputs by using an indexer module to retrieve a latent affordance from the learned codebook. To train our model, we develop a data engine that extracts 3D hand poses and contact trajectories from the diverse HoloAssist dataset. We evaluate our model on a benchmark that is 2.5-10X larger than existing works, in terms of diversity of objects and interactions observed, and test for generalization of the model across object categories, action categories, tasks, and scenes. Experimental results show the effectiveness of our approach over transformer & diffusion baselines across all settings. 
    more » « less
  5. Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. However, legged robots can manipulate large objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. This paper presents a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task. 
    more » « less