skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 21, 2026

Title: Differentiable GPU-Parallelized Task and Motion Planning
Planning long-horizon robot manipulation requires making discrete decisions about which objects to interact with and continuous decisions about how to interact with them. A robot planner must select grasps, placements, and motions that are feasible and safe. This class of problems falls under Task and Motion Planning (TAMP) and poses significant computational challenges in terms of algorithm runtime and solution quality, particularly when the solution space is highly constrained. To address these challenges, we propose a new bilevel TAMP algorithm that leverages GPU parallelism to efficiently explore thousands of candidate continuous solutions simultaneously. Our approach uses GPU parallelism to sample an initial batch of solution seeds for a plan skeleton and to apply differentiable optimization on this batch to satisfy plan constraints and minimize solution cost with respect to soft objectives. We demonstrate that our algorithm can effectively solve highly constrained problems with non-convex constraints in just seconds, substantially outperforming serial TAMP approaches, and validate our approach on multiple realworld robots.  more » « less
Award ID(s):
2214177
PAR ID:
10629494
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Robotics; Science and Systems
Date Published:
Journal Name:
Robotics science and systems
ISSN:
2330-7668
Format(s):
Medium: X
Location:
Los Angeles, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of planning for a robot that operates in environments containing a large number of objects, taking actions to move itself through the world as well as to change the state of the objects, is known as task and motion planning (TAMP). TAMP problems contain elements of discrete task planning, discrete–continuous mathematical programming, and continuous motion planning and thus cannot be effectively addressed by any of these fields directly. In this article, we define a class of TAMP problems and survey algorithms for solving them, characterizing the solution methods in terms of their strategies for solving the continuous-space subproblems and their techniques for integrating the discrete and continuous components of the search. 
    more » « less
  2. We present a learning-enabled Task and Motion Planning (TAMP) algorithm for solving mobile manipulation problems in environments with many articulated and movable obstacles. Our idea is to bias the search procedure of a traditional TAMP planner with a learned plan feasibility predictor. The core of our algorithm is PIGINet, a novel Transformer-based learning method that takes in a task plan, the goal, and the initial state, and predicts the probability of finding motion trajectories associated with the task plan. We integrate PIGINet within a TAMP planner that generates a diverse set of high-level task plans, sorts them by their predicted likelihood of feasibility, and refines them in that order. We evaluate the runtime of our TAMP algorithm on seven families of kitchen rearrangement problems, comparing its performance to that of non-learning baselines. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80\% on problems with small state spaces and 10\%-50\% on larger ones, after being trained on only 150-600 problems. Finally, it also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects. 
    more » « less
  3. Generative models such as diffusion models, excel at capturing high-dimensional distributions with diverse input modalities, e.g. robot trajectories, but are less effective at multistep constraint reasoning. Task and Motion Planning (TAMP) approaches are suited for planning multi-step autonomous robot manipulation. However, it can be difficult to apply them to domains where the environment and its dynamics are not fully known. We propose to overcome these limitations by composing diffusion models using a TAMP system. We use the learned components for constraints and samplers that are difficult to engineer in the planning model, and use a TAMP solver to search for the task plan with constraint-satisfying action parameter values. To tractably make predictions for unseen objects in the environment, we define the learned samplers and TAMP operators on learned latent embedding of changing object states. We evaluate our approach in a simulated articulated object manipulation domain and show how the combination of classical TAMP, generative modeling, and latent embedding enables multi-step constraint-based reasoning. We also apply the learned sampler in the real world. 
    more » « less
  4. Integrated task and motion planning (TAMP) has proven to be a valuable approach to generalizable long-horizon robotic manipulation and navigation problems. However, the typical TAMP problem formulation assumes full observability and deterministic action effects. These assumptions limit the ability of the planner to gather information and make decisions that are risk-aware. We propose a strategy for TAMP with Uncertainty and Risk Awareness (TAMPURA) that is capable of efficiently solving long-horizon planning problems with initial- state and action outcome uncertainty, including problems that require information gathering and avoiding undesirable and irreversible outcomes. Our planner reasons under uncertainty at both the abstract task level and continuous controller level. Given a set of closed-loop goal-conditioned controllers operating in the primitive action space and a description of their preconditions and potential capabilities, we learn a high-level abstraction that can be solved efficiently and then refined to continuous actions for execution. We demonstrate our approach on several robotics problems where uncertainty is a crucial factor and show that reasoning under uncertainty in these problems outperforms previously proposed determinized planning, direct search, and reinforcement learning strategies. Lastly, we demonstrate our planner on two real-world robotics problems using recent ad- vancements in probabilistic perception. 
    more » « less
  5. null (Ed.)
    In order to solve complex, long-horizon tasks, intelligent robots need to carry out high-level, abstract planning and reasoning in conjunction with motion planning. However, abstract models are typically lossy and plans or policies computed using them can be unexecutable. These problems are exacerbated in stochastic situations where the robot needs to reason about, and plan for multiple contingencies. We present a new approach for integrated task and motion planning in stochastic settings. In contrast to prior work in this direction, we show that our approach can effectively compute integrated task and motion policies whose branching structures encoding agent behaviors handling multiple execution-time contingencies. We prove that our algorithm is probabilistically complete and can compute feasible solution policies in an anytime fashion so that the probability of encountering an unresolved contingency decreases over time. Empirical results on a set of challenging problems show the utility and scope of our methods. 
    more » « less