The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure–function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called “ssPINE”. The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form.
more »
« less
This content will become publicly available on December 1, 2025
Elucidating structure and metabolism of insect biomaterials by solid-state NMR
Among the many natural biomaterials for which information on atomic-level structure and reorientational motion can offer essential clues to function, insoluble multi-component composites with limited degrees of order are among the most challenging to study. Despite its limited sensitivity, solid-state NMR (ssNMR) is often the technique of choice to ferret out these details in carbon- and nitrogen-rich materials: this spectroscopic approach can probe many biomaterials in their native or near-native states, either with or without the introduction of stable NMR-active isotopes, or with the assistance of dynamic nuclear polarization technology. During a span of close to four decades, such research targets and ssNMR approaches have been exemplified by insects, a diverse and evolutionarily agile group of organisms with global impacts that include ecology, agriculture, and human disease. In this short review, we present case studies on insect cuticles that range from protective exoskeletons and egg capsules to the wing structures that enable flight and showcase nature’s awe-inspiring beauty, highlighting the use of ssNMR spectroscopy to profile chemical composition, elucidate macromolecular architecture, and monitor metabolic development in these fascinating biological assemblies.
more »
« less
- Award ID(s):
- 2216654
- PAR ID:
- 10629509
- Editor(s):
- NA
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Solid State Nuclear Magnetic Resonance
- Volume:
- 134
- Issue:
- C
- ISSN:
- 0926-2040
- Page Range / eLocation ID:
- 101974
- Subject(s) / Keyword(s):
- solid-state NMR magic-angle spinning CPMAS insect, structure metabolism
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solid-state nuclear magnetic resonance (ssNMR) has been playing an indispensable role in revealing the interplay of structure and molecular dynamics in polymers at different states. In this Perspective, we first provide an overview about the fundamental spin interactions in ssNMR and then highlight some recent progress on sensitivity-enhanced ssNMR spectroscopy and in situ NMR. Moreover, we highlight ssNMR applications in the field of polymer crystallization, molecular dynamics, chemical reactions, supramolecular polymers, energy materials, and so on. Finally, our personal perspective is given on the future development at the crossroad of ssNMR and polymer science.more » « less
-
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables studying complex macromolecules with low solubility. Compared to solution NMR, few tools exist for biomacromolecule ssNMR data analysis. A key challenge is assigning spin systems due to low peak dispersion. Broad peaks from large dipolar couplings and shift anisotropy cause significant overlap and missing peaks. To address this, we introduce ssPINE-POKY, a user-friendly graphical user interface (GUI) integrated into the POKY suite. ssPINE-POKY streamlines the automation of spin system recognition and chemical shift assignment in multidimensional ssNMR spectra by integrating the ssPINE algorithm within an intuitive interface. The platform allows easy and fast job submission, real-time result visualization, and enhanced analysis through additional built-in tools, significantly improving the efficiency of ssNMR data interpretation.more » « less
-
Abstract Solid‐state NMR (SSNMR) spectroscopy of integer‐spin quadrupolar nuclei is important for the molecular‐level characterization of a variety of materials and biological solids; of the integer spins,2H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer‐spin nuclei often feature very broad powder patterns that arise largely from the effects of the first‐order quadrupolar interaction; as such, the acquisition of high‐quality spectra continues to remain a challenge. The broadband adiabatic inversion cross‐polarization (BRAIN‐CP) pulse sequence, which is capable of cross‐polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer‐spin nuclei, including14N (S = 1), especially when coupled with Carr–Purcell/Meiboom–Gill pulse sequences featuring frequency‐swept WURST pulses (WURST‐CPMG) forT2‐based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN‐CP, nor any concrete theoretical models to aid in its parameterization for applications to integer‐spin nuclei. In addition, the BRAIN‐CP/WURST‐CPMG scheme has not been demonstrated for generalized application to wideline or ultra‐wideline (UW)2H SSNMR. Herein, we provide a theoretical description of the BRAIN‐CP pulse sequence for spin‐1/2 → spin‐1 CP under static conditions, featuring a set of analytical equations describing Hartmann–Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer‐spin CP methods, demonstrating rapid acquisition of2H NMR spectra from efficient broadband CP.more » « less
-
Abstract Solid‐state nuclear magnetic resonance (ssNMR) measurements of intact cell walls and cellular samples often generate spectra that are difficult to interpret due to the presence of many coexisting glycans and the structural polymorphism observed in native conditions. To overcome this analytical challenge, we present a statistical approach for analyzing carbohydrate signals using high‐resolution ssNMR data indexed in a carbohydrate database. We generate simulated spectra to demonstrate the chemical shift dispersion and compare this with experimental data to facilitate the identification of important fungal and plant polysaccharides, such as chitin and glucans in fungi and cellulose, hemicellulose, and pectic polymers in plants. We also demonstrate that chemically distinct carbohydrates from different organisms may produce almost identical signals, highlighting the need for high‐resolution spectra and validation of resonance assignments. Our study provides a means to differentiate the characteristic signals of major carbohydrates and allows us to summarize currently undetected polysaccharides in plants and fungi, which may inspire future investigations.more » « less
An official website of the United States government
