skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Regulation of MILDEW RESISTANCE LOCUS-O trafficking by calmodulin-binding domains
Abstract Flowering plant sexual reproduction relies on the communication between the pollen tube and synergid cells to induce pollen tube bursting. During this process, the MILDEW RESISTANCE LOCUS-O (MLO) protein NORTIA (NTA) is polarly trafficked from the Golgi, where it is inactive, to the filiform apparatus, where it is functional in synergids. MLOs were recently described as calcium channels and have been proposed to be negatively regulated through calmodulin (CaM) binding at a conserved C-terminal calmodulin-binding domain (CaMBD). To determine whether CaM binding is necessary for MLO function during pollen tube reception, C-terminal truncations and CaMBD point mutations were made in NTA. Point mutations were also generated in a constitutively filiform apparatus-localized chimeric NTA containing the MLO1 C-terminus. In this study, we demonstrate that mutating the MLO1 and NTA CaMBD reduces the ability for MLOs to function during pollen tube reception. This is in part due to altered subcellular localization of the CaMBD mutants in synergids. We showed that the CaMBD is not necessary for Golgi localization of MLOs, but is necessary for efficient trafficking and total protein accumulation at the filiform apparatus. Our results suggest an additional role for CaM binding as a regulator of MLO trafficking in addition to its previously proposed role as a negative regulator of MLO Ca2+ channel activity.  more » « less
Award ID(s):
2224038
PAR ID:
10580044
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Murray, James
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pollen tube attraction is a key event of sexual reproduction in flowering plants. In the ovule, two synergid cells neighboring the egg cell control pollen tube arrival via the active secretion of attractant peptides such as AtLURE1 and XIUQIU from the filiform apparatus (FA) facing toward the micropyle. Distinctive cell polarity together with longitudinal F-actin and microtubules are hallmarks of the synergid cell in various species, though the functions of these cellular structures are unclear. In this study, we used genetic and pharmacological approaches to indicate the roles of cytoskeletal components in FA formation and pollen tube guidance in Arabidopsis thaliana. Genetic inhibition of microtubule formation reduced invaginations of the plasma membrane but did not abolish micropylar AtLURE1.2 accumulation. By contrast, the expression of a dominant-negative form of ACTIN8 induced disorganization of the FA and loss of polar AtLURE1.2 distribution toward the FA. Interestingly, after pollen tube reception, F-actin became unclear for a few hours in the persistent synergid cell, which may be involved in pausing and resuming pollen tube attraction during early polytubey block. Our data suggest that F-actin plays a central role in maintaining cell polarity and in mediating male–female communication in the synergid cell. 
    more » « less
  2. Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking. 
    more » « less
  3. Munson, Mary (Ed.)
    Prior work has identified signal sequences and motifs that are necessary and sufficient to target proteins to specific subcellular regions and organelles such as the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria. In contrast, minimal sequence motifs that are sufficient for Golgi localization remain largely elusive. In this work, we identified a 37–amino acid alternative open reading frame (altORF) within the mRNA of the centromere protein CENP-R. This altORF peptide localizes specifically to the cytoplasmic surface of the Golgi apparatus. Through mutational analysis, we identify a minimal 10–amino acid sequence and a critical cysteine residue that are necessary and sufficient for Golgi localization. Pharmacological perturbations suggest that this peptide undergoes lipid modification to promote its localization. Together, our work defines a minimal sequence that is sufficient for Golgi targeting and provide a valuable Golgi marker for live cell imaging. 
    more » « less
  4. Abstract Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking. 
    more » « less
  5. Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation. 
    more » « less