skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A CO2 and H2O Gas Analyzer with Reduced Error due to Platform Motion
One long-standing technical problem affecting the accuracy of eddy correlation air–sea CO2 flux estimates has been motion contamination of the CO2 mixing-ratio measurement. This sensor-related problem is well known but its source remains unresolved. This report details an attempt to identify and reduce motion-induced error and to improve the infrared gas analyzer (IRGA) design. The key finding is that a large fraction of the motion sensitivity is associated with the detection approach common to most closed- and open-path IRGA employed today for CO2 and H2O measurements. A new prototype sensor was developed to both investigate and remedy the issue. Results in laboratory and deep-water tank tests show marked improvement. The prototype shows a factor of 4–10 reduction in CO2 error under typical at-sea buoy pitch and roll tilts in comparison with an off-the-shelf IRGA system. A similar noise reduction factor of 2–8 is observed in water vapor measurements. The range of platform tilt motion testing also helps to document motion-induced error characteristics of standard analyzers. Study implications are discussed including findings relevant to past field measurements and the promise for improved future flux measurements using similarly modified IRGA on moving ocean observing and aircraft platforms.  more » « less
Award ID(s):
1737184
PAR ID:
10629652
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
40
Issue:
7
ISSN:
0739-0572
Page Range / eLocation ID:
845 to 854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Eddy covariance (EC) air–sea CO2flux measurements have been developed for large research vessels, but have yet to be demonstrated for smaller platforms. Our goal was to design and build a complete EC CO2flux package suitable for unattended operation on a buoy. Published state-of-the-art techniques that have proven effective on research vessels, such as airstream drying and liquid water rejection, were adapted for a 2-m discus buoy with limited power. Fast-response atmospheric CO2concentration was measured using both an off-the-shelf (“stock”) gas analyzer (EC155, Campbell Scientific, Inc.) and a prototype gas analyzer (“proto”) with reduced motion-induced error that was designed and built in collaboration with an instrument manufacturer. The system was tested on the University of New Hampshire (UNH) air–sea interaction buoy for 18 days in the Gulf of Maine in October 2020. The data demonstrate the overall robustness of the system. Empirical postprocessing techniques previously used on ship-based measurements to address motion sensitivity of CO2analyzers were generally not effective for the stock sensor. The proto analyzer markedly outperformed the stock unit and did not require ad hoc motion corrections, yet revealed some remaining artifacts to be addressed in future designs. Additional system refinements to further reduce power demands and increase unattended deployment duration are described. 
    more » « less
  2. The air–sea exchange of carbon dioxide (CO2) on a global scale is a key factor in understanding climate change and predicting its effects. The magnitude of sea spray’s contribution to this flux is currently highly uncertain. Constraining CO2’s diffusion in sea spray droplets is important for reducing error margins in global estimates of oceanic CO2 uptake and release. The timescale for CO2 gas diffusion within sea spray is known to be shorter than the timescales for the droplets’ physical changes to take place while aloft. However, the rate of aqueous carbonate reactions relative to these timescales has not been assessed. This study investigates the timescales of droplet physical changes to those of chemical transformations across the H2CO3/HCO3−/CO32− sequence. We found that physical timescales are rate limiting and that evaporation drives carbonate species into gaseous CO2, promoting the production and evasion of CO2 from sea spray droplets. This has important implications for carbon cycling and feedback in the surface ocean. 
    more » « less
  3. Abstract. This study considersyear-to-year and decadal variations in as well as secular trendsof the sea–air CO2 flux over the 1957–2020 period,as constrained by the pCO2 measurements from the SOCATv2021 database.In a first step,we relate interannual anomalies in ocean-internal carbon sources and sinksto local interannual anomalies insea surface temperature (SST), the temporal changes in SST (dSST/dt),and squared wind speed (u2),employing a multi-linear regression.In the tropical Pacific, we find interannual variability to be dominated by dSST/dt,as arising from variations in the upwelling of colder and more carbon-rich waters into the mixed layer.In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres,we find sensitivity to wind speed,compatible with the entrainment of carbon-rich water during wind-driven deepening of the mixed layerand wind-driven upwelling.In the Southern Ocean,the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer,with an estimated reduction in the sink trend in the range of 17 % to 42 %.In a second step,we combined the result of the multi-linear regression andan explicitly interannual pCO2-based additive correctioninto a “hybrid” estimate of the sea–air CO2 flux over the period 1957–2020.As a pCO2 mapping method,it combines (a) the ability of a regression to bridge data gaps and extrapolate intothe early decades almost void of pCO2 databased on process-related observablesand (b) the ability of an auto-regressive interpolation to follow signalseven if not represented in the chosen set of explanatory variables.The “hybrid” estimate can be applied as an ocean flux prior foratmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957. 
    more » « less
  4. Elger, Kirsten; Carlson, David; Klump, Jens; Peng, Ge (Ed.)
    Air-sea flux of carbon dioxide (CO2) is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO2 emitted into the atmosphere by human activities over the last decade. A common approach to estimate this net flux of CO2 across the air-sea interface is the use of surface ocean CO2 observations and the computation of the flux through a bulk parameterization approach. Yet, the details for how this is done in order to arrive at a global ocean CO2 uptake estimate varies greatly, unnecessarily enhancing the uncertainties. Here we reduce some of these uncertainties by harmonizing an ensemble of products that interpolate surface ocean CO2 bservations to near global coverage. We propose a common methodology to fill in missing areas in the products and to calculate fluxes and present a new estimate of the net flux. The ensemble data product, SeaFlux (Gregor & Fay (2021), doi.org/10.5281/zenodo.4133802, https://github.com/luke-gregor/SeaFlux), accounts for the diversity of the underlying mapping methodologies. Utilizing six 30 global observation-based mapping products (CMEMS-FFNN, CSIR-ML6, JENA-MLS, JMA-MLR, MPI-SOMFFN, NIESFNN), the SeaFlux ensemble approach adjusts for methodological inconsistencies in flux calculations that can result in an average error of 15% in global mean flux estimates. We address differences in spatial coverage of the surface ocean CO2 between the mapping products which ultimately yields an increase in CO2 uptake of up to 19% for some products. Fluxes are calculated using three wind products (CCMPv2, ERA5, and JRA55). Application of an appropriately scaled gas exchange 35 coefficient has a greater impact on the resulting flux than solely the choice of wind product. With these adjustments, we derive an improved ensemble of surface ocean pCO2 and air-sea carbon flux estimates. The SeaFlux ensemble suggests a global mean uptake of CO2 from the atmosphere of 1.92 +/- 0.35 PgC yr-1. This work aims to support the community effort to perform model-data intercomparisons which will help to identify missing fluxes as we strive to close the global carbon budget. 
    more » « less
  5. Single-photon sensitive image sensors have recently gained popularity in passive imaging applications where the goal is to capture photon flux (brightness) values of different scene points in the presence of challenging lighting conditions and scene motion. Recent work has shown that high-speed bursts of single-photon timestamp information captured using a single-photon avalanche diode camera can be used to estimate and correct for scene motion thereby improving signal-to-noise ratio and reducing motion blur artifacts. We perform a comparison of various design choices in the processing pipeline used for noise reduction, motion compensation, and upsampling of single-photon timestamp frames. We consider various pixelwise noise reduction techniques in combination with state-of-the-art deep neural network upscaling algorithms to super-resolve intensity images formed with single-photon timestamp data. We explore the trade space of motion blur and signal noise in various scenes with different motion content. Using real data captured with a hardware prototype, we achieved superresolution reconstruction at frame rates up to 65.8 kHz (native sampling rate of the sensor) and captured videos of fast-moving objects. The best reconstruction is obtained with the motion compensation approach, which achieves a structural similarity (SSIM) of about 0.67 for fast moving rigid objects. We are able to reconstruct subpixel resolution. These results show the relative superiority of our motion compensation compared to other approaches that do not exceed an SSIM of 0.5. 
    more » « less