skip to main content


Title: Harmonization of global surface ocean pCO2 mapped products and their flux calculations; an improved estimate of the ocean carbon sink
Air-sea flux of carbon dioxide (CO2) is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO2 emitted into the atmosphere by human activities over the last decade. A common approach to estimate this net flux of CO2 across the air-sea interface is the use of surface ocean CO2 observations and the computation of the flux through a bulk parameterization approach. Yet, the details for how this is done in order to arrive at a global ocean CO2 uptake estimate varies greatly, unnecessarily enhancing the uncertainties. Here we reduce some of these uncertainties by harmonizing an ensemble of products that interpolate surface ocean CO2 bservations to near global coverage. We propose a common methodology to fill in missing areas in the products and to calculate fluxes and present a new estimate of the net flux. The ensemble data product, SeaFlux (Gregor & Fay (2021), doi.org/10.5281/zenodo.4133802, https://github.com/luke-gregor/SeaFlux), accounts for the diversity of the underlying mapping methodologies. Utilizing six 30 global observation-based mapping products (CMEMS-FFNN, CSIR-ML6, JENA-MLS, JMA-MLR, MPI-SOMFFN, NIESFNN), the SeaFlux ensemble approach adjusts for methodological inconsistencies in flux calculations that can result in an average error of 15% in global mean flux estimates. We address differences in spatial coverage of the surface ocean CO2 between the mapping products which ultimately yields an increase in CO2 uptake of up to 19% for some products. Fluxes are calculated using three wind products (CCMPv2, ERA5, and JRA55). Application of an appropriately scaled gas exchange 35 coefficient has a greater impact on the resulting flux than solely the choice of wind product. With these adjustments, we derive an improved ensemble of surface ocean pCO2 and air-sea carbon flux estimates. The SeaFlux ensemble suggests a global mean uptake of CO2 from the atmosphere of 1.92 +/- 0.35 PgC yr-1. This work aims to support the community effort to perform model-data intercomparisons which will help to identify missing fluxes as we strive to close the global carbon budget.  more » « less
Award ID(s):
1850983
NSF-PAR ID:
10293980
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Elger, Kirsten; Carlson, David; Klump, Jens; Peng, Ge
Date Published:
Journal Name:
Earth system science data
ISSN:
1866-3508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.

     
    more » « less
  2. The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations. 
    more » « less
  3. Abstract

    The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4using an ensemble of global gap‐filled observation‐based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model‐product difference to the seasonality in sea surface CO2partial pressure at mid‐ and high‐latitudes, where models simulate stronger winter CO2uptake. The coastal ocean CO2sink has increased in the past decades but the available time‐resolving observation‐based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2‐e year−1in observational product and +0.54 PgCO2‐e year−1in model median) and CH4(+0.21 PgCO2‐e year−1in observational product), which offsets a substantial proportion of the coastal CO2uptake in the net radiative balance (30%–60% in CO2‐equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.

     
    more » « less
  4. Abstract

    New estimates ofpCO2from profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project have demonstrated the importance of wintertime outgassing south of the Polar Front, challenging the accepted magnitude of Southern Ocean carbon uptake (Gray et al., 2018,https://doi:10.1029/2018GL078013). Here, we put 3.5 years of SOCCOM observations into broader context with the global surface carbon dioxide database (Surface Ocean CO2Atlas, SOCAT) by using the two interpolation methods currently used to assess the ocean models in the Global Carbon Budget (Le Quéré et al., 2018,https://doi:10.5194/essd‐10‐2141‐2018) to create a ship‐only, a float‐weighted, and a combined estimate of Southern Ocean carbon fluxes (<35°S). In our ship‐only estimate, we calculate a mean uptake of −1.14 ± 0.19 Pg C/yr for 2015–2017, consistent with prior studies. The float‐weighted estimate yields a significantly lower Southern Ocean uptake of −0.35 ± 0.19 Pg C/yr. Subsampling of high‐resolution ocean biogeochemical process models indicates that some of the differences between float and ship‐only estimates of the Southern Ocean carbon flux can be explained by spatial and temporal sampling differences. The combined ship and float estimate minimizes the root‐mean‐squarepCO2difference between the mapped product and both data sets, giving a new Southern Ocean uptake of −0.75 ± 0.22 Pg C/yr, though with uncertainties that overlap the ship‐only estimate. An atmospheric inversion reveals that a shift of this magnitude in the contemporary Southern Ocean carbon flux must be compensated for by ocean or land sinks within the Southern Hemisphere.

     
    more » « less
  5. Abstract

    Coastal vegetated habitats like seagrass meadows can mitigate anthropogenic carbon emissions by sequestering CO2as “blue carbon” (BC). Already, some coastal ecosystems are actively managed to enhance BC storage, with associated BC stocks included in national greenhouse gas inventories. However, the extent to which BC burial fluxes are enhanced or counteracted by other carbon fluxes, especially air‐water CO2flux (FCO2) remains poorly understood. In this study, we synthesized all available direct FCO2measurements over seagrass meadows made using atmospheric Eddy Covariance, across a globally representative range of ecotypes. Of the four sites with seasonal data coverage, two were net CO2sources, with average FCO2equivalent to 44%–115% of the global average BC burial rate. At the remaining sites, net CO2uptake was 101%–888% of average BC burial. A wavelet coherence analysis demonstrated that FCO2was most strongly related to physical factors like temperature, wind, and tides. In particular, tidal forcing was a key driver of global‐scale patterns in FCO2, likely due to a combination of lateral carbon exchange, bottom‐driven turbulence, and pore‐water pumping. Lastly, sea‐surface drag coefficients were always greater than the prediction for the open ocean, supporting a universal enhancement of gas‐transfer in shallow coastal waters. Our study points to the need for a more comprehensive approach to BC assessments, considering not only organic carbon storage, but also air‐water CO2exchange, and its complex biogeochemical and physical drivers.

     
    more » « less