Abstract We present Atacama Large Millimeter/submillimeter Array observations of the [CI] 492 and 806 GHz fine-structure lines in 25 dusty star-forming galaxies (DSFGs) atz= 4.3 in the core of the SPT2349–56 protocluster. The protocluster galaxies exhibit a median ratio of 0.94, with an interquartile range of 0.81–1.24. These ratios are markedly different to those observed in DSFGs in the field (across a comparable redshift and 850μm flux density range), where the median is 0.55, with an interquartile range of 0.50–0.76, and we show that this difference is driven by an excess of [Ci](2–1) in the protocluster galaxies for a given 850μm flux density. Assuming local thermal equilibrium, we estimate gas excitation temperatures of K for our protocluster sample and K for the field sample. Our main interpretation of this result is that the protocluster galaxies have had their cold gas driven to their cores via close-by interactions within the dense environment, leading to an overall increase in the average gas density and excitation temperature, as well as an elevated [Ci](2–1) luminosity-to-far-infrared-luminosity ratio.
more »
« less
This content will become publicly available on July 15, 2026
ALMA-JELLY. I. High Resolution CO(2–1) Observations of Ongoing Ram Pressure Stripping in NGC 4858 Reveal Asymmetrical Gas Tail Formation and Fallback
Abstract We present new CO(2–1) observations (resolution ∼1″ = 460 pc) of the Coma cluster jellyfish galaxy NGC 4858 obtained from the ALMA-JELLY large program. Analyzing this data alongside complimentary Subaru Hαand Hubble Space Telescope (F600LP / F350LP) observations, we find numerous structural and kinematic features indicative of the effects from strong, inclined ram pressure, including an asymmetric inner gas tail. We estimate a highly inclined disk-wind angle of . By subtracting a simple circular velocity model, we find (1): gas clumps that are being accelerated by ram pressure, and (2): signatures of gas clumps that had been previously pushed out of the disk but are now falling inward. We also discuss head-tail morphologies in star complexes within the stellar disk that appear to be ram pressure stripping (RPS)-influenced. Lastly, we compare this galaxy to state-of-the-art galaxy “wind tunnel” simulations. We find that this galaxy is one of the best nearby examples of strong and inclined ram pressure gas stripping, and of gas that is perturbed by ram pressure but not fully stripped and falls back. We emphasize the importance of torques due to ram pressure in highly inclined interactions, which help drive gas inward on the side rotating against the wind, contributing to the formation of asymmetric inner RPS tails.
more »
« less
- Award ID(s):
- 2407821
- PAR ID:
- 10629719
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 988
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 72
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The hot plasma in galaxy clusters, the intracluster medium, is expected to be shaped by subsonic turbulent motions, which are key for heating, cooling, and transport mechanisms. The turbulent motions contribute to the nonthermal pressure, which, if not accounted for, consequently imparts a hydrostatic mass bias. Accessing information about turbulent motions is thus of major astrophysical and cosmological interest. Characteristics of turbulent motions can be indirectly accessed through surface brightness fluctuations. This study expands on our pilot investigations of surface brightness fluctuations in the Sunyaev–Zel’dovich and in X-ray data by examining, for the first time, a large sample of 60 clusters using both SPT-SZ and XMM-Newton data and spans the redshift range 0.2 < z < 1.5, thus constraining the respective pressure and density fluctuations within 0.6R500. We deem density fluctuations to be of sufficient quality for 32 clusters, finding mild correlations between the peak of the amplitude spectra of density fluctuations and various dynamical parameters. We infer turbulent velocities from density fluctuations with an average Mach number , in agreement with numerical simulations. For clusters with inferred turbulent Mach numbers from fluctuations in both pressure, , and density, , we find broad agreement between and . Our results suggest either a bimodal or a skewed unimodal Mach number distribution, with the majority of clusters being turbulence-dominated (subsonic) while the remainder are shock-dominated (supersonic).more » « less
-
The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal RichAbstract Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor anequilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining with increasing Galactocentric radius.more » « less
-
We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M⊙), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate and mass loading factor for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation.more » « less
-
Abstract We have imaged the entirety of eight (plus one partial) Milky Way (MW)–like satellite systems, a total of 42 (45) satellites, from the Satellites Around Galactic Analogs II catalog in both Hαand Hiwith the Canada–France–Hawaii Telescope and the Jansky Very Large Array. In these eight systems we have identified four cases where a satellite appears to be currently undergoing ram pressure stripping (RPS) as its Higas collides with the circumgalactic medium (CGM) of its host. We also see a clear suppression of gas fraction (MHI/M*) with decreasing (projected) satellite–host separation—to our knowledge, the first time this has been observed in a sample of MW-like systems. Comparisons to the Auriga, A Project Of Simulating The Local Environment, and TNG50 cosmological zoom-in simulations show consistent global behavior, but they systematically underpredict gas fractions across all satellites by roughly 0.5 dex. Using a simplistic RPS model, we estimate the average peak CGM density that satellites in these systems have encountered to be . Furthermore, we see tentative evidence that these satellites are following a specific star formation rate to gas fraction relation that is distinct from field galaxies. Finally, we detect one new gas-rich satellite in the UGC 903 system with an optical size and surface brightness meeting the standard criteria to be considered an ultra-diffuse galaxy.more » « less
An official website of the United States government
