Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present new CO(2–1) observations (resolution ∼1″ = 460 pc) of the Coma cluster jellyfish galaxy NGC 4858 obtained from the ALMA-JELLY large program. Analyzing this data alongside complimentary Subaru Hαand Hubble Space Telescope (F600LP / F350LP) observations, we find numerous structural and kinematic features indicative of the effects from strong, inclined ram pressure, including an asymmetric inner gas tail. We estimate a highly inclined disk-wind angle of . By subtracting a simple circular velocity model, we find (1): gas clumps that are being accelerated by ram pressure, and (2): signatures of gas clumps that had been previously pushed out of the disk but are now falling inward. We also discuss head-tail morphologies in star complexes within the stellar disk that appear to be ram pressure stripping (RPS)-influenced. Lastly, we compare this galaxy to state-of-the-art galaxy “wind tunnel” simulations. We find that this galaxy is one of the best nearby examples of strong and inclined ram pressure gas stripping, and of gas that is perturbed by ram pressure but not fully stripped and falls back. We emphasize the importance of torques due to ram pressure in highly inclined interactions, which help drive gas inward on the side rotating against the wind, contributing to the formation of asymmetric inner RPS tails.more » « lessFree, publicly-accessible full text available July 15, 2026
-
Abstract Ram pressure stripping (RPS) is an important process that plays a significant role in shaping the evolution of cluster galaxies and their surrounding environment. Despite its recognized significance, the potential connection between RPS and active galactic nuclei (AGN) activity in cluster galaxies remains poorly understood. Recent claims, based on optical emission-line diagnostics, have suggested such a connection. Here, we investigate this relationship from an X-ray perspective, using a sample of galaxies undergoing RPS in four nearby galaxy clusters: A1656, A1367, A426, and A3627. This study is the first to test such a connection from an X-ray standpoint. Our analysis reveals no signs of enhanced X-ray AGN activity in our sample, with most RPS galaxies (~90%) showing X-ray luminosities below 1041erg s−1in their central point sources. Moreover, there is no noticeable difference in X-ray AGN activity among RPS galaxies compared to a control sample of non-RPS galaxies, as demonstrated by the similar X-ray luminosities observed in their central point sources. While the most luminous X-ray AGN in our sample is found in ESO 137-002, a galaxy undergoing RPS in A3627, there is no evidence for a widespread enhancement of X-ray AGN activity due to RPS. Given the limited sample size of our study, this could also indicate that either the X-ray AGN enhancement from RPS is at most weak or the timescale for the X-ray AGN enhancement is short. This emphasizes the need for further investigations with larger X-ray samples to better understand the impact of RPS on AGN activity in cluster galaxies.more » « lessFree, publicly-accessible full text available January 22, 2026
-
We present MeerKAT H Iobservations of ESO 137-001, a quintessential jellyfish galaxy with long multi-phase tails formed due to the interaction with the intra-cluster medium of its host galaxy cluster, ACO 3627. Our observations reveal the presence of H Iin both the disc and outer regions of the galaxy for the first time, with a total H Imass of (3.5 ± 0.4)×108M⊙. ESO 137-001 is at an advanced stage of gas stripping; it is extremely H Ideficient and seems to have lost 90% of its initial H Imass; about 2/3 of the surviving H Iis found at larger radius than expected for a normal H Idisc and forms ∼40 kpc tail coincident with the tail detected at other wavelengths. Only ∼10% of the surviving H Iis still found within the stellar disc, consistent with the expectation of an outside-in truncation due to ram pressure. Similarly to other jellyfish galaxies, ESO137-001 has a high star formation rate for the low amount of H Idetected. We measure an H Idepletion time of 0.29 Gyr. However, when taking into account the total gas (H I+ H2) content, the depletion time is consistent with typical values measured in nearby spiral galaxies. This suggests that ESO 137-001 is at its current stage of ram pressure interaction characterised by an efficient H Istripping, rather than an enhanced conversion of H Ito H2, which was recently observed in some other jellyfish galaxies.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Ram-pressure stripping of the spiral galaxy ESO 137−001 within the highly dynamical intracluster medium (ICM) of the Norma cluster lead to spectacular extraplanar CO, optical, Hα, UV, and X-ray emission. The Hαand X-ray tails extend up to 80 kpc from the galactic disk. We present dynamical simulations of the ram-pressure stripping event, and investigate the physics of the stripped gas and its ability to form stars. We also use these simulations to predict H Imaps and to constrain the orbit of ESO 137−001 within the Norma cluster. Special care was taken for the stripping of the diffuse gas. In a new approach, we analytically estimate the mixing between the intracluster and interstellar media. Different temporal ram-pressure profiles and the ICM-ISM mixing rate were tested. Three preferred models show most of the observed multiwavelength characteristics of ESO 137−001. Our highest-ranked model best reproduces the CO emission distribution, velocity for distances of ≲20 kpc from the galactic disk, and the available near-ultraviolet (NUV) observations. The second and third preferred models best reproduce the available X-ray and Hαobservations of the gas tail, including the Hαvelocity field. The angle between the direction of the galaxy’s motion and the plane of the galactic disk is between 60° and 75°. Ram-pressure stripping thus occurs more face-on. The existence of a two-tailed structure is a common feature in our models, and is due to the combined action of ram pressure and rotation together with the projection of the galaxy on the sky. Our modeling of the Hαemission caused by ionization through thermal conduction is consistent with observations. We predict the H Iemission distributions for the different models. Based on the 3D velocity vector derived from our dynamical model, we derive a galaxy orbit, which is close to unbound. We argue that ram pressure is enhanced by a factor of ∼2.5 compared to that expected for an orbit in an unperturbed spherical ICM. This increase can be obtained in two ways: an increase in the ICM density or a moving ICM opposite to the motion of the galaxy within the cluster. In a strongly perturbed galaxy cluster, such as the Norma cluster, with an off-center ICM distribution, the two possibilities are probable and plausible.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
